297 research outputs found

    On a counterexample to a conjecture by Blackadar

    Get PDF
    Blackadar conjectured that if we have a split short-exact sequence 0 -> I -> A -> A/I -> 0 where I is semiprojective and A/I is isomorphic to the complex numbers, then A must be semiprojective. Eilers and Katsura have found a counterexample to this conjecture. Presumably Blackadar asked that the extension be split to make it more likely that semiprojectivity of I would imply semiprojectivity of A. But oddly enough, in all the counterexamples of Eilers and Katsura the quotient map from A to A/I is split. We will show how to modify their examples to find a non-semiprojective C*-algebra B with a semiprojective ideal J such that B/J is the complex numbers and the quotient map does not split.Comment: 6 page

    Noncommutative geometry, topology and the standard model vacuum

    Get PDF
    As a ramification of a motivational discussion for previous joint work, in which equations of motion for the finite spectral action of the Standard Model were derived, we provide a new analysis of the results of the calculations herein, switching from the perspective of Spectral triple to that of Fredholm module and thus from the analogy with Riemannian geometry to the pre-metrical structure of the Noncommutative geometry. Using a suggested Noncommutative version of Morse theory together with algebraic KK-theory to analyse the vacuum solutions, the first two summands of the algebra for the finite triple of the Standard Model arise up to Morita equivalence. We also demonstrate a new vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page

    Graph C*-algebras and Z/2Z-quotients of quantum spheres

    Full text link
    We consider two Z/2Z-actions on the Podles generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesniewski q-disc and the quantum real projective space, respectively. The C*-algebras of all these quantum spaces are described as graph C*-algebras. The K-groups of the thus presented C*-algebras are then easily determined from the general theory of graph C*-algebras. For the quantum real projective space, we also recall the classification of the classes of irreducible *-representations of its algebra and give a linear basis for this algebra.Comment: 8 pages, latex2

    On the structure of the space of generalized connections

    Full text link
    We give a modern account of the construction and structure of the space of generalized connections, an extension of the space of connections that plays a central role in loop quantum gravity.Comment: 30 pages, added references, minor changes. To appear in International Journal of Geometric Methods in Modern Physic

    Unlocking the performance potential of functionally diverse teams: The paradoxical role of leader mood

    Get PDF
    In a multisource, lagged design field study of 66 consulting teams, we investigated the role of leader mood in unlocking the performance potential of functionally diverse teams. In line with our hypotheses, we found that, given high levels of leader positive mood, functional diversity was positively related to collective team identification. In contrast, given high levels of l

    A separability criterion for density operators

    Full text link
    We give a necessary and sufficient condition for a mixed quantum mechanical state to be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross norm on the tensor product of trace class operators.Comment: REVTeX, 5 page

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    Barycentric decomposition of quantum measurements in finite dimensions

    Full text link
    We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of k \le d^2 points of the outcome space, d< \infty being the dimension of the Hilbert space. We prove that for second countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein-Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on k \le d^2 points of the outcome space.Comment: !5 pages, no figure

    The Preventative Benefit of Group Diversification on Group Performance Decline

    Get PDF
    Integrating the open systems perspective of groups and the contingency approach to diversity, we study how group diversification (i.e. a process in which a group becomes more diverse over time as members join and/or leave the group) affects group performance change in an adverse task environment characterized with uncertainty and risks for failure. We argue that diversification benefits performance by reducing group performance decline in adversity. Group size increase, however, attenuates this preventative benefit of group diversification. Focusing on organizational tenure and gender, we studied 279 sales groups (3,277 individuals) in a large German financial consulting company from 2004 to 2008. In this period, a national legislative change prompted the company to withdraw its star product from the market and presented adversity to the sales groups. Results from latent growth models (LGMs) overall support our arguments. This research extends the (conditional) beneficial view of diversity from a static theoretical space about groups’ being diverse to a dynamic one about groups’ becoming diverse

    Quantum line bundles on noncommutative sphere

    Full text link
    Noncommutative (NC) sphere is introduced as a quotient of the enveloping algebra of the Lie algebra su(2). Using the Cayley-Hamilton identities we introduce projective modules which are analogues of line bundles on the usual sphere (we call them quantum line bundles) and define a multiplicative structure in their family. Also, we compute a pairing between certain quantum line bundles and finite dimensional representations of the NC sphere in the spirit of the NC index theorem. A new approach to constructing the differential calculus on a NC sphere is suggested. The approach makes use of the projective modules in question and gives rise to a NC de Rham complex being a deformation of the classical one.Comment: LaTeX file, 15 pp, no figures. Some clarifying remarks are added at the beginning of section 2 and into section
    • …
    corecore