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ON A COUNTEREXAMPLE TO A CONJECTURE BY

BLACKADAR

ADAM P. W. SØRENSEN

Abstract. Blackadar conjectured that if we have a split short-exact sequence
0 → I → A → C → 0 where I is semiprojective then A must be semiprojective.
Eilers and Katsura have found a counterexample to this conjecture. Presum-
ably Blackadar asked that the extension be split to make it more likely that
semiprojectivity of I would imply semiprojectivity of A. But oddly enough,
in all the counterexamples of Eilers and Katsura the quotient map from A
to A/I ∼= C is split. We will show how to modify their examples to find a
non-semiprojective C∗-algebra B with a semiprojective ideal J such that B/J
is the complex numbers and the quotient map does not split.

1. Introduction

Semiprojectivity is a lifting property for C∗-algebras. It was introduced in [1]
in a successful attempt to transfer some of the power of shape theory for metric
spaces to the world of C∗-algebras.

Definition 1. A C∗-algebra A is semiprojective if whenever we have a C∗-algebra B
containing an increasing sequence of ideals J1 ⊆ J2 ⊆ · · · , and a ∗-homomorphism
φ : A→ B/∪kJk, we can find an n ∈ N and a ∗-homomorphism ψ : A→ B/Jn such
that

πn,∞ ◦ ψ = φ,

where πn,∞ : B/Jn ։ B/∪kJk is the natural quotient map.

Pictorially, A is semiprojective if we can always fill in the dashed arrow in the
following commutative diagram:

B

����
B/Jn

����
A

φ
//

ψ
;;①

①
①

①
①

B/∪kJk.

The book [10] is the canonical source for information about semiprojectivity. See
also the more recent paper [2], the beginning of which has an expository nature.

Many of the main problems about semiprojectivity are concerned with the per-
manence properties of semiprojective C∗-algebras. In [1] Blackadar proves that the
direct sum of two unital semiprojective C∗-algebras is again semiprojective, and
that if A is unital and semiprojective then Mn(A) is also semiprojective. These
results where later extended from unital algebras to σ-unital algebras, so in par-
ticular to all separable algebras, by Loring in [9]. The results are a little stronger,
in fact we have for separable algebras that A ⊕ B is semiprojective if and only if
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2 ADAM P. W. SØRENSEN

both A and B are, and a separable unital algebra D is semiprojective if and only
if M2(D) is. It is still an open problem if a non-unital A must be semiprojective
whenever M2(A) is. It is true if A is commutative, see [16, Corollary 6.9].

For a long time the following conjecture by Blackadar ([2, Conjecture 4.5]),
which was first asked as a question by Loring in [10], was one of the main questions
concerning the permanence properties of semiprojective C∗-algebras:

Conjecture 1 (Blackadar). Let

0 → A→ B → C → 0

be a split exact sequence of separable C∗-algebras. If A is semiprojective then so is
B.

An important partial result was obtained in [5, Theorem 6.2.1]. It was used in
[5] to show that all the so called one-dimensional non-commutativ CW complexes
are semiprojective. Enders ([6]) has proved a form of converse to Conjecture 1,
namely that if 0 → A→ B → C → 0 is an exact sequence of separable C∗-algebras
with B semiprojective then A is semiprojective.

Recently Eilers and Katsura ([4]) have found a counterexample to Conjecture 1:

Theorem 1 (Eilers-Katsura). There exists a split short exact sequence

0 → A→ B → C → 0

where A is semiprojective but B is not.

The techniques used by Eilers and Katsura comes from the world of graph C∗-
algebra, and so only leads to split short exact sequence. Their work leaves open the
question of whether there is a non-split short exact sequence 0 → A→ B → C → 0
with A semiprojective and B not semiprojective. In light of Eilers and Katsura’s
result we certainly expect such a sequence to exist, and indeed, as we shall see in
Theorem 3, it does.

This note is structured as follows: In Section 2 we prove two propositions that
will be our main tools, in Section 3 we prove the main theorem.

2. Toolbox

We will be working with pullbacks. Given two ∗-homomorphisms φ : A → D,
ψ : B → D, we write, by standard abuse of notation, the pullback of A and B taken
over φ and ψ as A ⊕D B. That is A ⊕D B = {(a, b) ∈ A ⊕ B | φ(a) = ψ(b)}.
The pullback is universal for ∗-homomorphisms into A and B that agree after
compositions with φ and ψ. For a detailed account of the theory of pullbacks (and
pushouts) see [12].

Our first tool will let us produce new short exact sequences from old ones. In
particular it gives us a way to alter a split short exact sequence to make it non-split.

Proposition 1. Suppose we are given two short exact sequence

(1) 0 → I → A
π
→ C → 0,

and

(2) 0 → J → B
ρ
→ C → 0.

Let P be the pullback of A and B taken over π and ρ. Then the following three
sequences are short exact:

0 → I ⊕ J → P → C → 0,(3)

0 → I → P → A→ 0, and,(4)

0 → J → P → B → 0.(5)
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Moreover (3) splits if and only if both (1) and (2) splits.

Proof. We begin by proving that (4) is exact. The map from P to A is simply
projection onto the first coordinate, which is a surjection since both π and ρ are
surjections. The kernel consists of pairs (a, b) ∈ P with a = 0, that is pairs (0, b)
where ρ(b) = 0. Hence the kernel is 0 ⊕ I ∼= I. A similar argument shows that (5)
is exact.

We now consider (3). The map from P to C takes a pair (a, b) and sends it to
π(a)(= ρ(b)). By the surjectivity of π and ρ we see that this is indeed a surjection.
The kernel of this map is pairs (a, b) ∈ P such that π(a) = 0 = ρ(b), which is
exactly I ⊕ J .

The universal property of the pullback ensures that if (1) and (2) both split
then (3) splits. On the other hand if we have a splitting from C to P , then simply
composing that with the coordinate projections will show that (1) and (2) both
split. �

Remark 1. In the form of a diagram we have shown that if we are given sequences
(1) and (2) as in the above proposition, then the following diagram commutes and
has exact rows, columns and diagonal.

0

""❉
❉❉

❉❉
❉❉

❉ 0

��

0

��
I ⊕ J

""❊
❊❊

❊❊
❊❊

❊❊
J

��

J

��
0 // I // P

�� ��❅
❅❅

❅❅
❅❅

❅
// B

��

// 0

0 // I // A

��

// C

�� ��❄
❄❄

❄❄
❄❄

❄
// 0

0 0 0

Now that we have a tool to construct non-split extensions from a split and a
non-split one, we need a tool to tell us if the new extension is semiprojective.
The following proposition is very slight generalization of [11, Proposition 5.19]
(where the ideal has to be the stabilization of a unital C∗-algebra). The proofs are
essentially identical, but since [11] is in German, we include a short proof.

Proposition 2. Consider a short exact sequence

0 → I → A
ρ
→ Q→ 0.

If I is generated as an ideal by finitely many projections and A is semiprojective
then Q is semiprojective.

Proof. Suppose we are given B, an increasing sequence of ideals (Jk) in B, and a ∗-
homomorphism φ : Q→ B/J , where J = ∪kJk. For all k ∈ N, we let πk,∞ : B/Jk →
B/J be the natural quotient map. By the semiprojectivity of A we can find and
n ∈ N and a ∗-homomorphism ψ : A→ B/Jn such that πn,∞ ◦ ψ = φ ◦ ρ.

Let p1, p2, . . . , pm be projections that generate I. For all i we have ρ(pi) = 0, and
therefore we have (πn,∞ ◦ψ)(pi) = 0. Hence, we can use [1, Lemma 2.13] to deduce
that there must be some l ≥ n such that (πn,l ◦ ψ)(pi) = 0 for all i = 1, 2, . . . ,m.
Since the pi generate I, we then have (πm,k ◦ ψ)(I) = 0, so πn,l ◦ ψ drops to a
∗-homomorphism ψ̄ : Q→ B/Jl with πl,∞ ◦ ψ̄ = φ. Thus ψ̄ and l combine to show
that Q is semiprojective. �
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Our strategy is now the following: Find a non-split short exact sequence

0 → J → B → C → 0,

such that J has a full projection. We will then use the construction in Proposition
1 on that and the Eilers-Katsura example, to produce a new non-split extension,
which we can show, using Proposition 2, has the desired properties.

3. Constructing a counterexample

We begin this section by constructing a non-split short exact sequence where
the ideal is semiprojective and contains a full projection, and the quotient is the
complex numbers. To prove that the constructed sequence is non-split we will use
K-theory. In particular, we will show that one of the boundary maps in the six-term
exact sequence is non-zero. Since K1(C) = 0, we need a semiprojective C∗-algebra
with non-zero K1-group. We will use a Kirchberg algebra.

Definition 2. A separable, simple, nuclear, purely infinite C∗-algebras is called a
Kirchberg algebra. If it also satisfies the universal coefficient theorem, we call it a
UCT Kirchberg algebra.

Definition 3. Denote by P∞ the unital UCT Kirchberg algebra with K0(P∞) = 0
and K1(P∞) = Z.

Building on the work of Blackadar ([2]) and Szymanski ([15]), Spielberg has
shown in [14, Theorem 3.12] that any Kirchberg algebra with finitely generated
K-theory and torsion free K1-group is semiprojective. In particular we have:

Theorem 2 (Spielberg). Let K denote the algebra of compact operators. The
Kirchberg algebra P∞ ⊗K is semiprojective.

We can now construct a non-split sequence with a semiprojective ideal that
contains a full projection.

Proposition 3. There exists a non-split short exact sequence

0 → J → E → C → 0,

where J is semiprojective and contains a full projection.

Proof. Put J = P∞ ⊗ K, as the stabilization of a unital algebra J contains a full
projection. By Theorem 2, it is semiprojective. We will pick E such that the
boundary map in K-theory from K0(C) to K1(J) is non-zero. Since K-theory is
split exact this implies that the sequence does not split.

We have the following short exact sequence:

0 → J →M(J) →M(J)/J → 0.

If we let η : K0(M(J)/J) → K1(J) be the boundary map in the six-term exact
sequence arising from the above extension, then by [3, Proposition 12.2.1] η is an
isomorphism. In particular

K0(M(J)/J) ∼= K1(J) ∼= K1(P∞) = Z.

By [8, Theorem 2.2], the corona algebra M(J)/J has a continuous scale and so by
[7, Theorem 3.2] it is simple and purely infinite. Since M(J)/J is also unital there
is, by [3, Corollary 6.11.8], a projection p ∈ M(J)/J such that the class of p in
K0(M(J)/J) is 1 ∈ Z. Define a ∗-homomorphism τ : C → M(J)/J by τ(λ) = λp,
and notice that K0(τ) is an isomorphism of groups.
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Let E = M(J) ⊕M(J)/J C where the pullback is taken over the quotient map
from the multiplier algebra to the corona algebra and τ . We have the following
commutative diagram which has exact rows (see [17, Proposition 3.2.9]):

0 // J // E //

��

C //

τ

��

0

0 // J // M(J) // M(J)/J // 0

Let δ denote the boundary map from K0(C) to K1(J) in the six-term exact
sequence associated to the short exact sequence on top. By [13, Proposition 12.2.1]
the following square commutes:

K0(C)
δ //

K0(τ)

��

K1(J)

K0(M(J)/J) η
// K1(J)

Since η and K0(τ) are isomorphisms, we must have that δ is an isomorphism. In
particular δ is non-zero, so the sequence

0 → J → E → C → 0

does not split. �

We can now prove our main theorem.

Theorem 3. There exists a non-split short exact sequence

0 → K → B → C → 0,

such that K is semiprojective but B is not.

Proof. Let

0 → I → A
π
→ C → 0

be a short exact sequence such that I is separable and semiprojective but A is
not semiprojective, e.g. one of the extensions constructed by Eilers and Katsura
(Theorem 1), and let

(6) 0 → J → E
ρ
→ C → 0

be the non-split extension constructed in Proposition 3.
Put B = A⊕CE where the pullback is taken over π and ρ. By Proposition 1 we

have the following two short exact sequence:

0 → I ⊕ J → B → C → 0, and,(7)

0 → J → B → A→ 0.(8)

Furthermore (8) does not split as (6) does not split.
Since J has a full projection and A is not semiprojective Proposition 2 applied to

(8) gives us that B is not semiprojective. To complete the proof we put K = I ⊕ J
and notice that K is semiprojective, as it is the sum of two separable semiprojective
C∗-algebras ([9, Theorem 4.2]). �
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