23 research outputs found

    Assessment of hydrological pathways in East African montane catchments under different land use

    Get PDF
    Conversion of natural forest (NF) to other land uses could lead to significant changes in catchment hydrology, but the nature of these changes has been insufficiently investigated in tropical montane catchments, especially in Africa. To address this knowledge gap, we aimed to identify stream water (RV) sources and flow paths in three tropical montane sub-catchments (27–36&thinsp;km2) with different land use (natural forest, NF; smallholder agriculture, SHA; and commercial tea and tree plantations, TTP) within a 1021&thinsp;km2 catchment in the Mau Forest complex, Kenya. Weekly samples were collected from stream water, precipitation (PC) and mobile soil water for 75 weeks and analysed for stable isotopes of water (ή2H and ή18O) for mean transit time (MTT) estimation with two lumped parameter models (gamma model, GM; and exponential piston flow model, EPM) and for the calculation of the young water fraction. Weekly samples from stream water and potential endmembers were collected over a period of 55 weeks and analysed for Li, Na, Mg, K, Rb, Sr and Ba for endmember mixing analysis (EMMA). Solute concentrations in precipitation were lower than in stream water in all catchments (p&thinsp;&lt;&thinsp;0.05), whereas concentrations in springs, shallow wells and wetlands were generally more similar to stream water. The stream water isotope signal was considerably damped compared to the isotope signal in precipitation. Mean transit time analysis suggested long transit times for stream water (up to 4 years) in the three sub-catchments, but model efficiencies were very low. The young water fraction ranged from 13&thinsp;% in the smallholder agriculture sub-catchment to 15&thinsp;% in the tea plantation sub-catchment. Mean transit times of mobile soil water ranged from 3.2–3.3 weeks in forest soils and 4.5–7.9 weeks in pasture soils at 15&thinsp;cm depth to 10.4–10.8 weeks in pasture soils at 50&thinsp;cm depth. The contribution of springs and wetlands to stream discharge increased from a median of 16.5 (95&thinsp;% confidence interval: 11.3–22.9), 2.1 (−3.0–24.2) and 50.2 (30.5–65.5) % during low flow to 20.7 (15.2–34.7), 53.0 (23.0–91.3) and 69.4 (43.0–123.9) % during high flow in the natural forest, smallholder agriculture and tea plantation sub-catchments, respectively. Our results indicate that groundwater is an important component of stream water, irrespective of land use. The results further suggest that the selected transit time models and tracers might not be appropriate in tropical catchments with highly damped stream water isotope signatures. A more in-depth investigation of the discharge dependence of the young water fraction and transit time estimation using other tracers, such as tritium, could therefore shed more light on potential land use effects on the hydrological behaviour of tropical montane catchments.</p

    Citizen science pioneers in Kenya – A crowdsourced approach for hydrological monitoring

    Get PDF
    Although water is involved in many ecosystem services, the absence of monitoring data restricts the development of effective water management strategies especially in remote regions. Traditional monitoring networks can be expensive, with unaffordable costs in many low-income countries. Involving citizens in monitoring through crowdsourcing has the potential to reduce these costs but remains uncommon in hydrology. This study evaluates the quality and quantity of data generated by citizens in a remote Kenyan basin and assesses whether crowdsourcing is a suitable method to overcome data scarcity. We installed thirteen water level gauges equipped with signboards explaining the monitoring process to passers-by. Results were sent via a text-message-based data collection framework that included an immediate feedback to citizens. A public web interface was used to visualize the data. Within the first year, 124 citizens reported 1175 valid measurements. We identified thirteen citizens as active observers providing more than ten measurements, whereas 57% only sent one record. A comparison between the crowdsourced water level data and an automatic gauging station revealed high data quality. The results of this study indicate that citizens can provide water level data of sufficient quality and with high temporal resolution

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Diurnal Patterns in Solute Concentrations Measured with In Situ UV-Vis Sensors:Natural Fluctuations or Artefacts?

    No full text
    In situ spectrophotometers measuring in the UV-visible spectrum are increasingly used to collect high-resolution data on stream water quality. This provides the opportunity to investigate short-term solute dynamics, including diurnal cycling. This study reports unusual changes in diurnal patterns observed when such sensors were deployed in four tropical headwater streams in Kenya. The analysis of a 5-year dataset revealed sensor-specific diurnal patterns in nitrate and dissolved organic carbon concentrations and different patterns measured by different sensors when installed at the same site. To verify these patterns, a second mobile sensor was installed at three sites for more than 3 weeks. Agreement between the measurements performed by these sensors was higher for dissolved organic carbon (r > 0.98) than for nitrate (r = 0.43–0.81) at all sites. Higher concentrations and larger amplitudes generally led to higher agreement between patterns measured by the two sensors. However, changing the position or level of shading of the mobile sensor resulted in inconsistent changes in the patterns. The results of this study show that diurnal patterns measured with UV-Vis spectrophotometers should be interpreted with caution. Further work is required to understand how these measurements are influenced by environmental conditions and sensor-specific properties

    Rainfall-Runoff Modeling Using Crowdsourced Water Level Data

    No full text
    Complex and costly discharge measurements are usually required to calibrate hydrological models. In contrast, water level measurements are straightforward, and practitioners can collect them using a crowdsourcing approach. Here we report how crowdsourced water levels were used to calibrate a lumped hydrological model. Using six different calibration schemes based on discharge or crowdsourced water levels, we assessed the value of crowdsourced data for hydrological modeling. As a benchmark, we used estimated discharge from automatically measured water levels and identified 2,500 parameter sets that resulted in the highest Nash‐Sutcliffe‐Efficiencies in a Monte Carlo‐based uncertainty framework (Q‐NSE). Spearman‐Rank‐Coefficients between crowdsourced water levels and modeled discharge (CS‐SR) or observed discharge and modeled discharge (Q‐SR) were used as an alternative way to calibrate the model. Additionally, we applied a filtering scheme (F), where we removed parameter sets, which resulted in a runoff that did not agree with the water balance derived from measured precipitation and publicly available remotely sensed evapotranspiration data. For the Q‐NSE scheme, we achieved a mean NSE of 0.88, while NSEs of 0.43 and 0.36 were found for Q‐SR and CS‐SR, respectively. Within the filter schemes, NSEs approached the values achieved with the discharge calibrated model (Q‐SRF 0.7, CS‐SRF 0.69). Similar results were found for the validation period with slightly better efficiencies. With this study we demonstrate how crowdsourced water levels can be effectively used to calibrate a rainfall‐runoff model, making this modeling approach a potential tool for ungauged catchments

    Rainfall-Runoff Modeling Using Crowdsourced Water Level Data

    No full text

    Crowdsourced Water Level Monitoring in Kenya’s Sondu-Miriu Basin—Who Is “The Crowd”?

    No full text
    Citizen science is gaining popularity as a way to engage people to participate in environmental projects. In addition to potential challenges regarding data quality and the choice of variables, a key factor in the success of participatory monitoring projects is the active participation of volunteers, the “citizen scientists.” To learn more about the motivation of citizen scientists to participate and their socio-economic background, a telephone survey was implemented with participants of a citizen science water level monitoring program in the Sondu-Miriu basin, western Kenya. We analyzed the data using descriptive statistics and random forest models to elucidate the characteristics of the participant population, underlying motivations, and the challenges and opportunities to develop recommendations for sustainable community-based water monitoring programs. As citizen scientists who engaged long-term were 30–49 years old, had primary or secondary school education and passed by the monitoring station frequently, targeting sensitization activities at people with such background could increase participation in community-based water monitoring. Sensitization meetings were key in engaging long-term volunteers, but participants indicated that continued feedback through education and communication of the project findings is required to keep volunteers motivated. The use of cellphone credit to submit data was identified as challenge for participation, highlighting the need for data submission methods that do not incur costs for the participants. Greater volunteer support could also be achieved by active involvement of the members of Water Resource Users Associations, since membership increased the likelihood of continuous engagement in water monitoring under the participants. Furthermore, many participants indicated that their motivation was to help water management and conservation, as most people rely directly on rivers for their water supply. Providing a platform to contribute to better water resources management could therefore result in direct benefits (e.g., improved water supply) for the participants, and thus an incentive to participate actively

    Monitoring of Suspended Sediments in a Tropical Forested Landscape With Citizen Science

    No full text
    Catchments are complex systems, which require regular monitoring of hydro-chemical parameters in space and time to provide comprehensive datasets. These are needed to characterize catchment behavior on a local level, make future projections based on models, implement mitigation measures and meet policy targets. However, many developing countries lack a good infrastructure for hydrological monitoring since its establishment is costly and the required resources are often not available. To overcome such challenges in data scarce regions like Kenya, a participatory citizen science approach can be a promising strategy for monitoring water resources. This study evaluates the potential of using a contributory citizen science approach to explore spatiotemporal turbidity and suspended sediment dynamics in the Sondu-Miriu river basin, western Kenya. A group of 19 citizen scientists was trained to monitor turbidity using turbidity tubes and water levels with water level gauges in six nested subcatchments of the Sondu-Miriu river basin. Over the course of the project, a total of 37 citizen scientists participated and contributed to the overall dataset of turbidity. The sampling effort and data contribution varied from year to year and among participants with the majority of the data (72%) originating from 8 (22%) citizen scientists. Comparison between citizen-scientist collected suspended sediment data and measurements from automated stations showed high correlation (R2 > 0.9) which demonstrates that data collected by citizen scientists can be comparable to data collected using expensive monitoring equipment. However, there was reduced precision of the measurements of suspended sediment concentrations at low and high levels attributed largely to the detection limitations of the turbidity tubes and citizen scientists not capturing major sediment export events. Suspended sediment concentrations were significantly higher downstream (109 ± 94 mg L−1), a subcatchment dominated by agriculture and rangeland with low forest vegetation cover, as compared to a subcatchment with high forest cover (50 ± 24.7 mg L−1). This finding indicates that forest cover is a key landscape feature to control suspended sediment concentrations in the region. Future citizen science projects should focus on motivation and engagement strategies and the application of robust methods with improved detection limits and resolution to advance hydrological monitoring. Copyright © 2021 Njue, GrĂ€f, Weeser, Rufino, Breuer and Jacobs
    corecore