156 research outputs found
Evaluation of profitability and future potential for low emission productive uses of land that is currently used for livestock: SLMACC Project 405422
Agriculture accounts for 48% of New Zealandâs gross greenhouse gas (GHG) emissions with nearly 75% of the emissions coming from methane (CHâ) production from ruminant animals (enteric-CHâ) (Ministry for the Environment 2020). Changes to alternative low biogenic greenhouse gas emission (BGE) land uses is an option for reducing national GHG and meeting national reduction targets for overall GHG and CHâ. However, large land use change will have implications for New Zealandâs economy. To address this, replacing profitable livestock with alternative profitable land uses would potentially overcome this concern.
This report describes work conducted in the Ministry for Primary Industries (MPI) Sustainable Land Management and Climate Change (SLMACC) Project 405422 - Evaluation of profitability and future potential for low emission productive uses of land that is currently used for livestock. The aim of the project was to evaluate potential agricultural land uses (including crop and forest options) that could provide an alternative to livestock production based on market growth opportunities, GHG footprints and suitability for current climate and soil conditions.
Our approach was to produce a framework whereby we could consider the trade-offs between BGE and profitability. Firstly, we identified potential high value crops that could increase their production areas based on an assessment of market opportunities. Secondly, we assessed their growing requirements and identified where they might grow throughout New Zealand. Then, for each crop we estimated potential BGE and ranges in profitability; we also considered the role of forestry in emission reductions and as a profitable land use. Finally, we considered CHâ emissions reduction scenarios where these alternative land uses might replace livestock. Through the various stages of the work we ground-truthed our findings with stakeholders and industry experts
Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations
Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (NâO) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of NâO emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and âgap-fillingâ approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper
Variations in activin receptor, inhibin/activin subunit and follistatin mRNAs in human prostate tumour tissues
The possible role of activin in the regulation of malignant prostatic growth was studied using RNAase protection assays of activin receptors, inhibin/activin subunits and follistatin mRNAs in the human prostatic carcinoma cell lines LNCaP-FGC, -R and -LNO, in human prostatic carcinoma xenografts and in human prostatic tissue. Activin receptor types IA (ActRIA), IB (ActRIB), IIA (ActRIIA) and IIB (ActRIIB) mRNAs were generally expressed in prostate pithelial cells, with significantly lower levels of ActRIB mRNA in prostate tumour aterial when compared to non-malignant tissue (P< 0.05; MannâWhitney U -test). Inhibin/activin ÎČA- and ÎČB-subunit mRNA expression was also found in prostate tissue. Androgen-independent xenografts expressed significantly lower amounts of ÎČB-subunit mRNA when compared to androgen-dependent xenografts (P< 0.05). While ÎČB-subunit mRNA was expressed by LNCaP-FGC and -LNO cells, virtually no expression was found in the androgen-independent LNCaP-R line. Inhibin α-subunit mRNA levels were low or undetectable in all samples investigated. Follistatin mRNA was undetectable in LNCaP-sublines, while low levels were found in prostatic tissues. In androgen-independent LNCaP-R cells, activin inhibited cell growth in a dose-dependent manner. These results suggest that prostate tumour progression is accompanied by a decrease of the inhibitory effect of locally produced activin by either a decrease in the expression of activin ÎČB-subunit mRNA or by a decrease of ActRIB mRNA levels. © 2000 Cancer Research Campaig
The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer cells to gemcitabine through the induction of mitotic catastrophe.
As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naĂŻve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC
DATAMAN: A global database of methane, nitrous oxide, and ammonia emission factors for livestock housing and outdoor storage of manure
Livestock manure management systems can be significant sources of nitrous oxide (N2O), methane (CH4), and ammonia (NH3) emissions. Many studies have been conducted to improve our understanding of the emission processes and to identify influential variables in order to develop mitigation techniques adapted to each manure management step (animal housing, outdoor storage, and manure spreading to land). The international project DATAMAN (http://www.dataman.co.nz) aims to develop a global database on greenhouse gases (N2O, CH4) and NH3 emissions from the manure management chain to refine emission factors (EFs) for national greenhouse gas and NH3 inventories. This paper describes the housing and outdoor storage components of this database. Relevant information for different animal categories, manure types, livestock buildings, outdoor storage, and climatic conditions was collated from published peer reviewed research, conference papers, and existing databases published between 1995 and 2021. In the housing database, 2024 EFs were collated (63% for NH3, 19.5% for CH4, and 17.5% for N2O). The storage database contains 654 NH3 EFs from 16 countries, 243 CH4 EFs from 13 countries, and 421 N2O EFs from 17 countries. Across all gases, dairy cattle and swine production in temperate climate zones are the most represented animal and climate categories. As for the housing database, the number of EFs for the tropical climate zone is under-represented. The DATAMAN database can be used for the refinement of national inventories and better assessment of the cost-effectiveness of a range of mitigation strategies
Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer
Background/objective: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. Methods: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. Results: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ÎČ, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ÎČ as a GSK3ÎČ inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. Conclusion: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ÎČ.</p
CETSA-based target engagement of taxanes as biomarkers for efficacy and resistance
The use of taxanes has for decades been crucial for treatment of several cancers. A major limitation of these therapies is inherent or acquired drug resistance. A key to improved outcome of taxane-based therapies is to develop tools to predict and monitor drug efficacy and resistance in the clinical setting allowing for treatment and dose stratification for individual patients. To assess treatment efficacy up to the level of drug target engagement, we have established several formats of tubulin-specific Cellular Thermal Shift Assays (CETSAs). This technique was evaluated in breast and prostate cancer models and in a cohort of breast cancer patients. Here we show that taxanes induce significant CETSA shifts in cell lines as well as in animal models including patient-derived xenograft (PDX) models. Furthermore, isothermal dose response CETSA measurements allowed for drugs to be rapidly ranked according to their reported potency. Using multidrug resistant cancer cell lines and taxane-resistant PDX models we demonstrate that CETSA can identify taxane resistance up to the level of target engagement. An imaging-based CETSA format was also established, which in principle allows for taxane target engagement to be accessed in specific cell types in complex cell mixtures. Using a highly sensitive implementation of CETSA, we measured target engagement in fine needle aspirates from breast cancer patients, revealing a range of different sensitivities. Together, our data support that CETSA is a robust tool for assessing taxane target engagement in preclinical models and clinical material and therefore should be evaluated as a prognostic tool during taxane-based therapies
Global Research Alliance N2O chamber methodology guidelines: considerations for automated flux measurement
Nitrous oxide (N2O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2O chamber systems
Overexpression of Full-Length ETV1 Transcripts in Clinical Prostate Cancer Due to Gene Translocation
ETV1 is overexpressed in a subset of clinical prostate cancers as a fusion transcript with many different partners. However, ETV1 can also be overexpressed as a full-length transcript. Full-length ETV1 protein functions differently from truncated ETV1 produced by fusion genes. In this study we describe the genetic background of full-length ETV1 overexpression and the biological properties of different full-length ETV1 isoforms in prostate cancer. Break-apart FISH showed in five out of six patient samples with overexpression of full-length ETV1 a genomic rearrangement of the gene, indicating frequent translocation. We were able to study the rearrangements in more detail in two tumors. In the first tumor 5âČ-RACE on cDNA showed linkage of the complete ETV1 transcript to the first exon of a prostate-specific two exon ncRNA gene that maps on chromosome 14 (EST14). This resulted in the expression of both full-length ETV1 transcripts and EST14-ETV1 fusion transcripts. In chromosome spreads of a xenograft derived from the second prostate cancer we observed a complex ETV1 translocation involving a chromosome 7 fragment that harbors ETV1 and fragments of chromosomes 4 and 10. Further studies revealed the overexpression of several different full-length transcripts, giving rise to four protein isoforms with different N-terminal regions. Even the shortest isoform synthesized by full-length ETV1 stimulated in vitro anchorage-independent growth of PNT2C2 prostate cells. This contrasts the lack of activity of even shorter N-truncated ETV1 produced by fusion transcripts. Our findings that in clinical prostate cancer overexpression of full-length ETV1 is due to genomic rearrangements involving different chromosomes and the identification of a shortened biologically active ETV1 isoform are highly relevant for understanding the mechanism of ETV1 function in prostate cancer
Capturing complex tumour biology in vitro: Histological and molecular characterisation of precision cut slices
Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means
- âŠ