30 research outputs found

    The Coarse-Grained Plaque: A Divergent Aβ Plaque-Type in Early-Onset Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aβ deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque’s association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aβ-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aβ-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque’s neuritic component (pTau, APP, PrPC), Aβ isoform composition (Aβ40, Aβ42, AβN3pE, pSer8Aβ), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aβ40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aβ40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aβ plaque-type associated with EOAD. Differences in Aβ processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aβ deposits. Disentangling specific Aβ deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies

    Individual Resilience and Innovative Work Behaviour after Personal Trauma

    No full text
    This very preliminary and early developmental paper aims to bring together insights on how (individual) resilience influences innovative work behavior as an important factor of innovation performance after personal trauma in the context of innovative organizations. We posit that individual knowledge workers’ resilience may positively influence their innovative work behavior after adversities/personal trauma. For the empirical part of the paper we interviewed (academic) knowledge workers and managers/leaders of innovative firms having experienced personal trauma / adversity. We use a semi-structured interview protocol and timeline mapping as a method for conducting the interviews. Preliminary results indicate and confirm that personal trauma /adversity does indeed have a (temporary) impact on their innovativeness. It also comes out that resilience can be fostered by organizational arrangements, for example: team resilience and leadership may positively influence individual knowledge workers’ innovativeness and overall team innovation performance after personal trauma. It is clear that also age, life phase / hierarchical position, and time play an important role, as well as possibly gender and innovation strategy/type of industry – specifically the peculiarities of an academic work environment. We thereupon introduce multiple strands of further research including longitudinal research using twice yearly employee satisfaction surveys, and survey research among innovation scholars
    corecore