59 research outputs found
A two-mass expanding exact space-time solution
In order to understand how locally static configurations around
gravitationally bound bodies can be embedded in an expanding universe, we
investigate the solutions of general relativity describing a space-time whose
spatial sections have the topology of a 3-sphere with two identical masses at
the poles. We show that Israel junction conditions imply that two spherically
symmetric static regions around the masses cannot be glued together. If one is
interested in an exterior solution, this prevents the geometry around the
masses to be of the Schwarzschild type and leads to the introduction of a
cosmological constant. The study of the extension of the Kottler space-time
shows that there exists a non-static solution consisting of two static regions
surrounding the masses that match a Kantowski-Sachs expanding region on the
cosmological horizon. The comparison with a Swiss-Cheese construction is also
discussed.Comment: 15 pages, 5 figures. Replaced to match the published versio
A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid
A mesoscopic colloid model is developed in which a spherical colloid is
represented by many interacting sites on its surface. The hydrodynamic
interactions with thermal fluctuations are taken accounts in full using
Dissipative Particle Dynamics, and the electrostatic interactions are simulated
using Particle-Particle-Particle Mesh method. This new model is applied to
investigate the electrophoretic mobility of a charged colloid under an external
electric field, and the influence of salt concentration and colloid charge are
systematically studied. The simulation results show good agreement with
predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance
Computing in Science & Engineering '1
Differences in life-history traits in two clonal strains of the self-fertilizing fish, Rivulus marmoratus
We compared life-history traits such as fecundity, sex ratio, reproductive cycle, age at sexual maturity, embryonic period, egg size, early growth and morphology in two clonal strains (PAN-RS and DAN) of the mangrove killifish, Rivulus marmoratus, under constant rearing conditions. We found a positive relationship between growth and reproductive effort. Fecundity was significantly higher in the PAN-RS strain than in the DAN strain. The sex ratio was significantly different, with DAN producing more primary males than PAN-RS. Spawning and ovulation cycle did not clearly differ between the strains. PAN-RS showed a significantly higher growth rate than DAN from 0 to 100 days after hatching, however, age at sexual maturity, embryonic period, egg size, and morphometric and meristic characteristics (vertebral and fin-ray counts) did not differ between the two strains. The high fecundity of PAN-RS may provide an increased chance of offspring survival, while the attainment of sexual maturity at a smaller size in DAN may allow them to invest earlier in reproduction to increase breeding success. Variations in the life-history traits of PAN-RS and DAN may be adaptive strategies for life in their natural habitat, which consists of mangrove estuaries with a highly variable environment
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
Safety in numbers 3: Authenticity, building knowledge & skills and competency development & assessment: The ABC of safe medication dosage calculation problem-solving pedagogy
When designing learning and assessment environments it is essential to articulate the underpinning education philosophy, theory, model and learning style support mechanisms that inform their structure and content. We elaborate on original PhD research that articulates the design rationale of authentic medication dosage calculation problem-solving (MDC-PS) learning and diagnostic assessment environments. These environments embody the principles of authenticity, building knowledge and skills and competency assessment and are designed to support development of competence and bridging of the theory-practice gap. Authentic learning and diagnostic assessment environments capture the features and expert practices that are located in real world practice cultures and recreate them in authentic virtual clinical environments. We explore how this provides students with a safe virtual authentic environment to actively experience, practice and undertake MDC-PS learning and assessment activities. We argue that this is integral to the construction and diagnostic assessment of schemata validity (mental constructions and frameworks that are an individual's internal representation of their world), bridging of the theory-practice gap and cognitive and functional competence development. We illustrate these principles through the underpinning pedagogical design of two online virtual authentic learning and diagnostic assessment environments (safeMedicate and eDoseâą)
Safety in numbers 2: Competency modelling and diagnostic error assessment in medication dosage calculation problem-solving
Accurately defining and modelling competence in medication dosage calculation problem-solving (MDC-PS) is a fundamental pre-requisite to measuring competence, diagnosing errors and determining the necessary design and content of professional education programmes. In this paper we advance an MDC-PS competence model that illustrates the relationship between conceptual competence (dosage problem-understanding), calculation competence (dosage-computation) and technical measurement competence (dosage-measurement). To facilitate bridging of the theory-practice gap it is critical that such models are operationalised within a wider education framework that supports the learning, assessment and synthesis of cognitive competence (the knowing that and knowing why of MDC-PS) and functional competence (the know-how and skills associated with the professional practice of MDC-PS in clinical settings).Within the context of supporting the learning and diagnostic assessment of MDC-PS we explore PhD fieldwork that challenges the value of pedagogical approaches that focus solely on abstract information, that isolate the process of knowledge construction from its application in practice settings and contribute to the generation of conceptual errors. We consider misconceptions theory and the concept of mathematical 'dropped stitches' and offer an assessment model and program designed to diagnose flawed arithmetical operation and computation constructs
- âŠ