8 research outputs found
Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium
It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
Genetic interactions with age, sex, body mass index, and hypertension in relation to atrial fibrillation: The AFGen Consortium.
It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10(-5)). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10(-8)). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk
Four Susceptibility Loci for Gallstone Disease Identified in a Meta-analysis of Genome-Wide Association Studies
Background & Aims A genome-wide association study (GWAS) of 280 cases identified the hepatic cholesterol transporter ABCG8 as a locus associated with risk for gallstone disease, but findings have not been reported from any other GWAS of this phenotype. We performed a large-scale, meta-analysis of GWASs of individuals of European ancestry with available prior genotype data, to identify additional genetic risk factors for gallstone disease. Methods We obtained per-allele odds ratio (OR) and standard error estimates using age- and sex-adjusted logistic regression models within each of the 10 discovery studies (8720 cases and 55,152 controls). We performed an inverse variance weighted, fixed-effects meta-analysis of study-specific estimates to identify single-nucleotide polymorphisms that were associated independently with gallstone disease. Associations were replicated in 6489 cases and 62,797 controls. Results We observed independent associations for 2 single-nucleotide polymorphisms at the ABCG8 locus: rs11887534 (OR, 1.69; 95% confidence interval [CI], 1.54–1.86; P = 2.44 × 10-60) and rs4245791 (OR, 1.27; P = 1.90 × 10-34). We also identified and/or replicated associations for rs9843304 in TM4SF4 (OR, 1.12; 95% CI, 1.08–1.16; P = 6.09 × 10-11), rs2547231 in SULT2A1 (encodes a sulfoconjugation enzyme that acts on hydroxysteroids and cholesterol-derived sterol bile acids) (OR, 1.17; 95% CI, 1.12–1.21; P = 2.24 × 10-10), rs1260326 in glucokinase regulatory protein (OR, 1.12; 95% CI, 1.07–1.17; P = 2.55 × 10-10), and rs6471717 near CYP7A1 (encodes an enzym
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.Cardiolog