59 research outputs found

    Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer

    Get PDF
    Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes

    FGFR1 inhibition in lung squamous cell carcinoma: questions and controversies

    Get PDF
    Although the incidence of lung cancer has decreased due to the reduction of tobacco use, lung cancer remains the leading cause of cancer-related death. Lung squamous cell carcinoma represents 30% of lung cancers and only recently have possible drug-targetable mutations been identified in this disease, including fibroblast growth factor receptor 1 (FGFR1) gene amplification and genetic alterations in the phosphoinositide-3 kinase pathway. These discoveries have generated a great interest in the clinic and the initiation of clinical trials using FGFR tyrosine kinase inhibitors to treat FGFR-altered lung cancers. However, preliminary results from these studies have shown that not all patients respond to therapy. Here we review current unresolved questions on the selection of patients for their recruitment in FGFR tyrosine kinase inhibitor trials, how FGFR inhibitors could be combined with other targeted therapies or immunotherapies to improve patient outcome, and how the current preclinical models can help address these questions

    Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation

    Get PDF
    Skin inflammatory responses in individuals with allergic dermatitis may be suppressed by dietary vitamin D through induction and upregulation of the suppressive activity of regulatory T (TReg) cells. Vitamin D may also promote TReg cell tropism to dermal sites. In the current study, we examined the capacity of dietary vitamin D3 to modulate skin inflammation and the numbers and activity of TReg cells in skin and other sites including lungs, spleen, and blood. In female BALB/c mice, dietary vitamin D3 suppressed the effector phase of a biphasic ear swelling response induced by dinitrofluorobenzene in comparison vitamin D3-deficient female BALB/c mice. Vitamin D3 increased the percentage of TReg (CD3+CD4+CD25+Foxp3+) cells in the skin-draining lymph nodes (SDLN). The suppressive activity of TReg cells in the SDLN, mesenteric lymph nodes, spleen, and blood was upregulated by vitamin D3. However, there was no difference in the expression of the naturally occurring TReg cell marker, neuropilin, nor the expression of CCR4 or CCR10 (skin-tropic chemokine receptors) on TReg cells in skin, SDLN, lungs, and airway-draining lymph nodes. These data suggest that dietary vitamin D3 increased the percentages and suppressive activity of TReg cells in the SDLN, which are poised to suppress dermal inflammation

    Biobanking and the further development of precision medicine

    No full text

    HSP90 Inhibition Suppresses Lipopolysaccharide-Induced Lung Inflammation In Vivo

    Get PDF
    Inflammation is an important component of cancer diathesis and treatment-refractory inflammation is a feature of many chronic degenerative lung diseases. HSP90 is a 90kDa protein which functions as an ATP-dependent molecular chaperone that regulates the signalling conformation and expression of multiple protein client proteins especially oncogenic mediators. HSP90 inhibitors are in clinical development as cancer therapies but the myeleosuppressive and neutropenic effect of first generation geldanamycin-class inhibitors has confounded studies on the effects on HSP90 inhibitors on inflammation. To address this we assessed the ability of Ganetespib, a non-geldanamycin HSP90 blocker, to suppress lipopolysaccharide (LPS)-induced cellular infiltrates, proteases and inflammatory mediator and transcriptional profiles. Ganetespib (10-100 mg/kg, i.v.) did not directly cause myelosuppression, as assessed by video micrography and basal blood cell count, but it strongly and dose-dependently suppressed LPS-induced neutrophil mobilization into blood and neutrophil- and mononuclear cell-rich steroid-refractory lung inflammation. Ganetespib also suppressed B cell and NK cell accumulation, inflammatory cytokine and chemokine induction and MMP9 levels. These data identify non-myelosuppresssive HSP90 inhibitors as potential therapies for inflammatory diseases refractory to conventional therapy, in particular those of the lung

    Protein markers and seed size variation in common bean segregating populations

    Get PDF
    18 páginas, 7 tablas.Selection and random genetic drift are the two main forces affecting allele frequencies in common bean breeding programs. Therefore, knowledge on allele frequency changes attributable to these forces is of fundamental importance for breeders. The changes in frequencies of alleles of biochemical markers were examined in F2 to F7 populations derived from crosses between cultivated Mesoamerican and Andean common bean accessions (Phaseolus vulgaris L.). Biochemical markers included the seed proteins phaseolin, lectin and other seed polypeptides, and six isozymes. The Schaffer’s test detected a high significant linear trend of the 63% of the polymorphic loci studied, meaning that directional selection was acting on those loci. Associations between seed size traits, phaseolin seed-storage protein and isozyme markers were detected based on the comparisons of the progeny genotypic means. In the interracial populations the intermediate form PhaH/T, b6, and Rbcs 98 alleles had a positive effect on seed size. In the inter-gene pool populations, a higher transmission of Mesoamerican alleles in all loci was showed, although the Andean alleles PhaT, Skdh 100 , Rbcs 98 , and Diap 100 showed positive effects on seed weight. Our results suggest that phaseolin and other seed proteins markers are linked to loci affecting seed size. These markers have good potential for improving the results of the selection and should be considered as a strategy for germplasm enhancement and to avoid the reduced performance of the inter-gene pool populations.Research was supported by the projects AGF97-0324 and AGL2005-01268/AGR from the Spanish Government, PGIDIT02RAG40301PR from the Galician Government (Spain), and EU-FEDER Funds. A. M. González thanks her fellowship to Ministry of Education, Culture and Sports of Spain. M. De la Fuente is grateful to the Xunta de Galicia for awarding her a fellowship grant.Peer reviewe
    • …
    corecore