24 research outputs found

    CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats

    Get PDF
    RATIONALE: Previous work suggests a role for stress-related corticotropin-releasing factor (CRF) systems in cocaine dependence. However, the involvement of activation of CRF(1) receptors in rats self-administering cocaine with extended access is unknown. OBJECTIVE: The current study examined whether CRF(1) receptor antagonist administration alters cocaine self-administration in animals given extended access. MATERIALS AND METHODS: Wistar rats (n = 32) acquired cocaine self-administration (0.66 mg/kg per infusion) in 1 h sessions for up to 11 days. Rats then were assigned to receive either daily short (1 h, ShA) or long (6 h, LgA) access to cocaine self-administration (n = 7-9 per group). Following escalation of intake, animals received one of two selective CRF(1) antagonists: antalarmin (6.3-25 mg/kg, i.p.) or N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5a]pyrimidin-7-amine (MPZP; 3.6-27.5 mg/kg, s.c.). RESULTS: By day 11 of the escalation period, LgA rats increased their cocaine intake, reaching an intake level of 15.1 mg/kg, compared to 11.1 mg/kg in ShA rats, during the first hour of sessions. Antalarmin reduced cocaine self-administration at the highest dose selectively in the LgA group but not the ShA group. MPZP reduced cocaine intake both in LgA and ShA rats. However, MPZP did so at a lower dose in LgA rats than in ShA rats. Within the LgA group, MPZP decreased cocaine intake in the first 10 min (loading phase) as well as in the latter session intake (maintenance phase). CONCLUSION: The data suggest that hypersensitivity of the CRF system occurs with extended access to cocaine self-administration and that this altered CRF system may contribute to the increased motivation to self-administer cocaine that develops during psychostimulant dependence

    Effects of Dose and Session Duration on Cocaine Self-Administration in Rats

    No full text

    Self-administration of ethanol, cocaine, or nicotine does not decrease the soma size of ventral tegmental area dopamine neurons.

    No full text
    Our previous observations show that chronic opiate administration, including self-administration, decrease the soma size of dopamine (DA) neurons in the ventral tegmental area (VTA) of rodents and humans, a morphological change correlated with increased firing rate and reward tolerance. Given that a general hallmark of drugs of abuse is to increase activity of the mesolimbic DA circuit, we sought to determine whether additional drug classes produced a similar morphological change. Sections containing VTA were obtained from rats that self-administered cocaine or ethanol and from mice that consumed nicotine. In contrast to opiates, we found no change in VTA DA soma size induced by any of these other drugs. These data suggest that VTA morphological changes are induced in a drug-specific manner and reinforce recent findings that some changes in mesolimbic signaling and neuroplasticity are drug-class dependent

    5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking

    No full text
    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNshort right arrowNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction

    κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of Methamphetamine Intake

    No full text
    Given that the κ opioid receptor (KOR) system has been implicated in psychostimulant abuse, we evaluated whether the selective KOR antagonist norbinaltorphimine dihydrochloride (nor-BNI) would attenuate the escalation of methamphetamine (METH) intake in an extended-access self-administration model. Systemic nor-BNI decreased the escalation of intake of long-access (LgA) but not short-access (ShA) self-administration. nor-BNI also decreased elevated progressive-ratio (PR) breakpoints in rats in the LgA condition and continued to decrease intake after 17 d of abstinence, demonstrating that the effects of a nor-BNI injection are long lasting. Rats with an ShA history showed an increase in prodynorphin immunoreactivity in both the nucleus accumbens (NAc) core and shell, but LgA animals showed a selective increase in the NAc shell. Other cohorts of rats received nor-BNI directly into the NAc shell or core and entered into ShA or LgA. nor-BNI infusion in the NAc shell, but not NAc core, attenuated escalation of intake and PR responding for METH in LgA rats. These data indicate that the development and/or expression of compulsive-like responding for METH under LgA conditions depends on activation of the KOR system in the NAc shell and suggest that the dynorphin-KOR system is a central component of the neuroplasticity associated with negative reinforcement systems that drive the dark side of addiction

      Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of Methamphetamine Intake

    No full text
    Given that the κ opioid receptor (KOR) system has been implicated in psychostimulant abuse, we evaluated whether the selective KOR antagonist norbinaltorphimine dihydrochloride (nor-BNI) would attenuate the escalation of methamphetamine (METH) intake in an extended-access self-administration model. Systemic nor-BNI decreased the escalation of intake of long-access (LgA) but not short-access (ShA) self-administration. nor-BNI also decreased elevated progressive-ratio (PR) breakpoints in rats in the LgA condition and continued to decrease intake after 17 d of abstinence, demonstrating that the effects of a nor-BNI injection are long lasting. Rats with an ShA history showed an increase in prodynorphin immunoreactivity in both the nucleus accumbens (NAc) core and shell, but LgA animals showed a selective increase in the NAc shell. Other cohorts of rats received nor-BNI directly into the NAc shell or core and entered into ShA or LgA. nor-BNI infusion in the NAc shell, but not NAc core, attenuated escalation of intake and PR responding for METH in LgA rats. These data indicate that the development and/or expression of compulsive-like responding for METH under LgA conditions depends on activation of the KOR system in the NAc shell and suggest that the dynorphin–KOR system is a central component of the neuroplasticity associated with negative reinforcement systems that drive the dark side of addiction

    Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving ΔFosB and Calcium/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell

    No full text
    The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D[subscript 1]-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine
    corecore