126 research outputs found

    Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation

    Full text link
    PURPOSE: Bioengineered dermo-epidermal skin analogs containing melanocytes represent a promising approach to cover large skin defects including restoration of the patient's own skin color. So far, little is known about the development of blood and lymphatic vessels in pigmented skin analogs after transplantation. In this experimental study, we analyzed the advancement and differences of host blood and lymphatic vessel ingrowth into light- and dark-pigmented human tissue-engineered skin analogs in a rat model. METHODS: Keratinocytes, melanocytes, and fibroblasts from light- and dark-pigmented skin biopsies were isolated, cultured, and expanded. For each donor, melanocytes and keratinocytes were seeded in ratios of 1:1, 1:5, and 1:10 onto fibroblast-containing collagen gels. The skin analogs were subsequently transplanted onto full-thickness wounds of immuno-incompetent rats and quantitatively analyzed for vascular and lymphatic vessel density after 8 and 15 weeks. RESULTS: The skin analogs revealed a significant difference in vascularization patterns between light- and dark-pigmented constructs after 8 weeks, with a higher amount of blood vessels in light compared to dark skin. In contrast, no obvious difference could be detected within the light- and dark-pigmented group when varying melanocyte/keratinocyte ratios were used. However, after 15 weeks, the aforementioned difference in blood vessel density between light and dark constructs could no longer be detected. Regarding lymphatic vessels, light and dark analogs showed similar vessel density after 8 and 15 weeks, while there were generally less lymphatic than blood vessels. CONCLUSION: These data suggest that, at least during early skin maturation, keratinocytes, melanocytes, and fibroblasts from different skin color types used to construct pigmented dermo-epidermal skin analogs have distinct influences on the host tissue after transplantation. We speculate that different VEGF expression patterns might be involved in this disparate revascularization pattern observed

    Health Care Consumers: Choices and Constraints

    Full text link
    This article summarizes the research and data currently available on different dimensions of consumer choice. These dimensions include not only whether to participate in a health care plan and which plan to select if given a choice but also the decisions that lead to having a choice and the implications of making the choice. Data are presented on what choices consumers face, how many are given what kinds of choices, what constraints they face, what we know about how they make these choices, and what information they are given and what they use. The majority of Americans are offered some kind of health insurance plan either through their place of employment or as a dependent on someone else’s employer-sponsored health plan. About half of those offered health insurance are offered a choice, usually of only two or three plans. The majority elect to participate in one of those plans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68465/2/10.1177_107755879905600102.pd

    Unique Phase Transition on Spin-2 Triangular Lattice of Ag2MnO2

    Full text link
    Ag2MnO2 is studied as a possible candidate compound for an antiferromagnetic XY spin model on a triangular lattice. In spite of the large Curie-Weiss temperature of -430 K found in magnetic susceptibi-lity, Mn3+ spins with S = 2 do not undergo a conventional long-range order down to 2 K probably owing to the geometrical frustration and two dimensionality in the system. Instead, a unique phase transition is found at 80 K, where specific heat exhibits a clear sign of a second-order phase transition, while magnetic susceptibility changes smoothly without a distinct anomaly. We think that this transition is related to the chirality degree of freedom associated with a short-range order, which has been expected for the classical XY spin model on a triangular lattice. On further cooling, spin-glass-like behavior is observed below 22 K, possibly corresponding to a quasi-long-range order.Comment: to appear in J. Phys. Soc. Jpn, Vol. 77, No.

    Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    Get PDF
    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species

    Structural transitions during the assembly of vimentin intermediate filaments by near-UV circular dichroism

    No full text

    Divalent Cations Crosslink Vimentin Intermediate Filament Tail Domains to Regulate Network Mechanics

    No full text
    Intermediate filament networks in the cytoplasm and nucleus are critical for the mechanical integrity of metazoan cells. However, the mechanism of crosslinking in these networks and the origins of their mechanical properties are not understood. Here, we study the elastic behavior of in vitro networks of the intermediate filament protein vimentin. Rheological experiments reveal that vimentin networks stiffen with increasing concentrations of C
    • …
    corecore