39 research outputs found

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Impacts of climate warming on Alpine lake biota over the past decade

    Get PDF
    Alpine temperatures have risen at twice the rate compared to the northern-hemispheric average during the past century. This can be expected to affect Alpine lake ecosystems via, for example, intensified thermal stratification, shorter ice cover periods, and altered catchment processes. Our study assesses changes in some main constituents of the plank tic and benthic communities of five mid-Alpine lakes in the Niedere Tauern region in Austria in relation to climatic warming, by comparing community and environmental data from 1998-1999 to data from 2010-2011. Although lake chemistry remained relatively stable between the study periods, we observed an increase in lake water temperatures and a decrease in ice cover durations. Several of the dominant diatom species and chrysophyte cyst types show relatively clear changes; the responses of the whole communities, however, are less evident. Yet, in particular, diatoms show distinct assemblage changes along the climatic gradients in the two lakes with the largest decrease in ice-cover duration. Chironomid communities appear to be less sensitive compared to diatoms and chrysophyte cysts, which are known for reacting quickly to changes in their environment. Finally, Alpine lakes, which are moderately nutrient-enriched because of human activities in the catchment area, are likely to experience increases in their productivity with climate warming.Peer reviewe

    Tonic transmitter release in a graded potential synapse

    No full text

    Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors

    Get PDF
    BACKGROUND: The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana), a nocturnal insect with a visual system adapted for dim light. RESULTS: Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR) and a fast transient inactivating type (KA). Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR) current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. CONCLUSIONS: The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding

    Past and Future Ecosystem Change in the Coastal Zone

    Get PDF
    The coastal zone is in a constant state of flux. Long term records of change attest to high amplitude sea level changes. Relative stability though the Late Holocene has allowed for the evolution of barrier dune systems, estuaries and coastal lakes with associated plant and faunal associations. This evolution has been interspersed with changes in the balance between climate driven changes in outflow from catchments. These interactions have been considerably disturbed through the impacts of industrialised people who have diverted and consumed water and invested in infrastructure that has impacted on river flows and the tidal prism in estuaries. This has impacted their provisioning services to humans. It has also impacted their regulating services in that development along the coastline has impacted on the resilience of the littoral zone to absorb natural climate extremes. Looking from the past we can see the pathway to the future and more easily recognise the steps needed to avoid further coastal degradation. This will increasingly need to accommodate the impacts of future climate trends, increased climate extremes and rising seas. Coastal societies would do well to identify their long term pathway to adaptation to the challenges that lie ahead and plan to invest accordingly. © Published under licence by IOP Publishing Ltd.IOP Conference Series: Earth and Environmental Scienc

    Applications of paleoenvironmental techniques in estuarine studies

    No full text
    The aim of this edited volume is to introduce the scientific community to paleoenvironmental studies of estuaries, to highlight the types of information that can be obtained from such studies, and to promote the use of paleoenvironmental studies in estuarine management. Readers will learn about the the application of different paleoecological approaches used in estuaries that develop our understanding of their response to natural and human influences. Particular attention is given to the essential steps required for undertaking a paleoecological study, in particular with regard to site selection, core extraction and chronological techniques, followed by the range of indicators that can be used. A series of case studies are discussed in the book to demonstrate how paleoecological studies can be used to address key questions, and to sustainably manage these important coastal environments in the future. This book will appeal to professional scientists interested in estuarine studies and/or paleoenvironmental research, as well as estuarine managers who are interested in the incorporation of paleoenvironmental research into their management programs
    corecore