61 research outputs found

    Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes

    Get PDF
    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment

    Murine Gamma-herpesvirus Immortalization of Fetal Liver-Derived B Cells Requires both the Viral Cyclin D Homolog and Latency-Associated Nuclear Antigen

    Get PDF
    Human gammaherpesviruses are associated with the development of lymphoproliferative diseases and B cell lymphomas, particularly in immunosuppressed hosts. Understanding the molecular mechanisms by which human gammaherpesviruses cause disease is hampered by the lack of convenient small animal models to study them. However, infection of laboratory strains of mice with the rodent virus murine gammaherpesvirus 68 (MHV68) has been useful in gaining insights into how gammaherpesviruses contribute to the genesis and progression of lymphoproliferative lesions. In this report we make the novel observation that MHV68 infection of murine day 15 fetal liver cells results in their immortalization and differentiation into B plasmablasts that can be propagated indefinitely in vitro, and can establish metastasizing lymphomas in mice lacking normal immune competence. The phenotype of the MHV68 immortalized B cell lines is similar to that observed in lymphomas caused by KSHV and resembles the favored phenotype observed during MHV68 infection in vivo. All established cell lines maintained the MHV68 genome, with limited viral gene expression and little or no detectable virus production - although virus reactivation could be induced upon crosslinking surface Ig. Notably, transcription of the genes encoding the MHV68 viral cyclin D homolog (v-cyclin) and the homolog of the KSHV latency-associated nuclear antigen (LANA), both of which are conserved among characterized γ2-herpesviruses, could consistently be detected in the established B cell lines. Furthermore, we show that the v-cyclin and LANA homologs are required for MHV68 immortalization of murine B cells. In contrast the M2 gene, which is unique to MHV68 and plays a role in latency and virus reactivation in vivo, was dispensable for B cell immortalization. This new model of gammaherpesvirus-driven B cell immortalization and differentiation in a small animal model establishes an experimental system for detailed investigation of the role of gammaherpesvirus gene products and host responses in the genesis and progression of gammaherpesvirus-associated lymphomas, and presents a convenient system to evaluate therapeutic modalities

    A Gammaherpesvirus Cooperates with Interferon-alpha/beta-Induced IRF2 to Halt Viral Replication, Control Reactivation, and Minimize Host Lethality

    Get PDF
    The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship

    Numerical Simulations of Void Linkage in Model Materials using a Nonlocal Ductile Damage Approximation

    Full text link
    Experiments on the growth and linkage of 10 μm diameter holes laser drilled in high precision patterns into Al-plates were modelled with finite elements. The simulations used geometries identical to those of the experiments and incorporated ductile damage by element removal under the control of a ductile damage indicator based on the micromechanical studies of Rice and Tracey. A regularization of the problem was achieved through an integral-type nonlocal model based on the smoothing of the rate of a damage indicator D over a characteristic length L. The simulation does not predict the experimentally observed damage acceleration either in the case where no damage is included or when only a local damage model is used. However, the full three-dimensional simulations based on the nonlocal damage methodology do predict both the failure path and the failure strain at void linkage for almost all configurations studied. For the cases considered the critical parameter controlling the local deformations at void linkage was found to be the ratio between hole diameter and hole spacing

    Glycosaminoglycan Interactions in Murine Gammaherpesvirus-68 Infection

    Get PDF
    Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces

    Involvement of TLR2 in Recognition of Acute Gammaherpesvirus-68 Infection

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in the activation of innate immunity in response to many viruses. We previously reported the implication of TLR2 in the recognition of Epstein-Barr virus (EBV) by human monocytes. Because murine gammaherpesvirus-68 (MHV-68) is a useful model to study human gammaherpesvirus pathogenesis in vivo, we evaluated the importance of mouse TLR2 in the recognition of MHV-68.In studies using transfected HEK293 cells, MHV-68 lead to the activation of NF-κB reporter through TLR2. In addition, production of interleukin-6 (IL-6) and interferon-α (IFN-α) upon MHV-68 stimulation was reduced in murine embryonic fibroblasts (MEFs) derived from TLR2-/- and MyD88-/- mice as compared to their wild type (WT) counterpart. In transgenic mice expressing a luciferase reporter gene under the control of the mTLR2 promoter, MHV-68 challenge activated TLR2 transcription. Increased expression levels of TLR2 on blood granulocytes (CD115(-)Gr1(+)) and inflammatory monocytes (CD115(+)Gr1(+)), which mobilized to the lungs upon infection with MHV-68, was also confirmed by flow cytometry. Finally, TLR2 or MyD88 deficiency was associated with decreased IL-6 and type 1 IFN production as well as increased viral burden during short-term challenges with MHV-68.TLR2 contributes to the production of inflammatory cytokines and type 1 IFN as well as to the control of viral burden during infection with MHV-68. Taken together, our results suggest that the TLR2 pathway has a relevant role in the recognition of this virus and in the subsequent activation of the innate immune response

    Gammaherpesvirus Latency Accentuates EAE Pathogenesis: Relevance to Epstein-Barr Virus and Multiple Sclerosis

    Get PDF
    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5′ untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    IgG Fc Receptors Provide an Alternative Infection Route for Murine Gamma-Herpesvirus-68

    Get PDF
    BACKGROUND: Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor(+) cells. PRINCIPAL FINDINGS: Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. CONCLUSIONS: IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68

    TLR9-induced interferon β is associated with protection from gammaherpesvirus-induced exacerbation of lung fibrosis

    Get PDF
    Abstract Background We have shown previously that murine gammaherpesvirus 68 (γHV68) infection exacerbates established pulmonary fibrosis. Because Toll-like receptor (TLR)-9 may be important in controlling the immune response to γHV68 infection, we examined how TLR-9 signaling effects exacerbation of fibrosis in response to viral infection, using models of bleomycin- and fluorescein isothiocyanate-induced pulmonary fibrosis in wild-type (Balb/c) and TLR-9-/- mice. Results We found that in the absence of TLR-9 signaling, there was a significant increase in collagen deposition following viral exacerbation of fibrosis. This was not associated with increased viral load in TLR-9-/- mice or with major alterations in T helper (Th)1 and Th2 cytokines. We examined alveolar epithelial-cell apoptosis in both strains, but this could not explain the altered fibrotic outcomes. As expected, TLR-9-/- mice had a defect in the production of interferon (IFN)-β after viral infection. Balb/c fibroblasts infected with γHV68 in vitro produced more IFN-β than did infected TLR-9-/- fibroblasts. Accordingly, in vitro infection of Balb/c fibroblasts resulted in reduced proliferation rates whereas infection of TLR-9-/- fibroblasts did not. Finally, therapeutic administration of CpG oligodeoxynucleotides ameliorated bleomycin-induced fibrosis in wild-type mice. Conclusions These results show a protective role for TLR-9 signaling in murine models of lung fibrosis, and highlight differences in the biology of TLR-9 between mice and humans.http://deepblue.lib.umich.edu/bitstream/2027.42/112877/1/13069_2011_Article_57.pd
    corecore