17,135 research outputs found

    Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Influence of Seeding Rate of Oats on Populations

    Get PDF
    In field and greenhouse studies, more cereal leaf beetle [Oulema melanopus (Lin- naeus)] eggs and larvae were found per unit area on spring oats, Avena sativa L., planted either at intermediate (54 kg/ha) or high (136 kg/ha) seeding rates, than when planted at a lower seeding rate (14 kg/ha). However, there were fewer eggs and larvae per stem in plantings of the high or intermediate rates than in those of the lower rate. Oats should not be planted at less than the recommended rates in beetle-infested areas

    Characterization of the complications associated with plasma exchange for thrombotic thrombocytopaenic purpura and related thrombotic microangiopathic anaemias: a single institution experience.

    Get PDF
    Plasma exchange (PEX) is a life-saving therapeutic procedure in patients with thrombotic thrombocytopaenic purpura (TTP) and other thrombotic microangiopathic anaemias (TMAs). However, it may be associated with significant complications, exacerbating the morbidity and mortality in this patient group

    Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation

    Get PDF
    Applying a magnetic-field gradient to a trapped ion allows long-wavelength radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb+171 ion and use it to produce entanglement between the spin and motional state, an essential step toward using such a field gradient to implement multiqubit operations

    High-fidelity readout of trapped-ion qubits

    Full text link
    We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results changed

    The genetic diversity and geographical separation study of Oncomelania hupensis populations in mainland China using microsatellite loci

    Get PDF
    © 2016 Guan et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article.NHM Repositor

    Scalable simultaneous multi-qubit readout with 99.99% single-shot fidelity

    Full text link
    We describe single-shot readout of a trapped-ion multi-qubit register using space and time-resolved camera detection. For a single qubit we measure 0.9(3)x10^{-4} readout error in 400us exposure time, limited by the qubit's decay lifetime. For a four-qubit register (a "qunybble") we measure an additional error of only 0.1(1)x10^{-4} per qubit, despite the presence of 4% optical cross-talk between neighbouring qubits. A study of the cross-talk indicates that the method would scale with negligible loss of fidelity to ~10000 qubits at a density <~1 qubit/um^2, with a readout time ~1us/qubit.Comment: 4 pages, 3 figures; simulations added to fig.3, with some further text and figure revisions. Main results unchanged

    Heterogeneous Unit Clustering for Efficient Operational Flexibility Modeling for Strategic Models

    Get PDF
    The increasing penetration of wind generation has led to significant improvements in unit commitment models. However, long-term capacity planning methods have not been similarly modified to address the challenges of a system with a large fraction of generation from variable sources. Designing future capacity mixes with adequate flexibility requires an embedded approximation of the unit commitment problem to capture operating constraints. Here we propose a method, based on clustering units, for a simplified unit commitment model with dramatic improvements in solution time that enable its use as a submodel within a capacity expansion framework. Heterogeneous clustering speeds computation by aggregating similar but non-identical units thereby replacing large numbers of binary commitment variables with fewer integers that still capture individual unit decisions and constraints. We demonstrate the trade-off between accuracy and run-time for different levels of aggregation. A numeric example using an ERCOT-based 205-unit system illustrates that careful aggregation introduces errors of 0.05-0.9% across several metrics while providing several orders of magnitude faster solution times (400x) compared to traditional binary formulations and further aggregation increases errors slightly (~2x) with further speedup (2000x). We also compare other simplifications that can provide an additional order of magnitude speed-up for some problems

    Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium

    Get PDF
    © 2015 Webster et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Ground-state cooling of a trapped ion Using long-wavelength radiation

    Get PDF
    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n¯=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system
    corecore