984 research outputs found

    Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo Containers

    Get PDF
    Classification problems arise in so many different parts of life – from sorting machine parts to diagnosing a disease. Humans make these classifications utilizing vast amounts of data, filtering observations for useful information, and then making a decision based on a subjective level of cost/risk of classifying objects incorrectly. This study investigates the translation of the human decision process into a mathematical problem in the context of a border security problem: How does one find special nuclear material being smuggled inside large cargo crates while balancing the cost of invasively searching suspect containers against the risk of al lowing radioactive material to escape detection? This may be phrased as a classification problem in which one classifies cargo containers into two categories – those containing a smuggled source and those containing only innocuous cargo. This task presents numerous challenges, e.g., the stochastic nature of radiation and the low signal-to-noise ratio caused by background radiation and cargo shielding. In the course of this work, we will break the analysis of this problem into three major sections – the development of an optimal decision rule, the choice of most useful measurements or features, and the sensitivity of developed algorithms to physical variations. This will include an examination of how accounting for the cost/risk of a decision affects the formulation of our classification problem. Ultimately, a support vector machine (SVM) framework with F -score feature selection will be developed to provide nearly optimal classification given a constraint on the reliability of detection provided by our algorithm. In particular, this can decrease the fraction of false positives by an order of magnitude over current methods. The proposed method also takes into account the relationship between measurements, whereas current methods deal with detectors independently of one another

    Electricity Investments under Technology Cost Uncertainty and Stochastic Technological Learning

    Get PDF
    Given that electricity generation investments are expected to operate for 40 or more years, the decisions we make today can have long-term impacts on the electricity system and the ability and cost of meeting long-term environmental goals. This research investigates socially optimal near-term electricity investment decisions under uncertainty in future technology costs and policy by formulating a computable general equilibrium (CGE) model of the U.S. as a two-stage stochastic dynamic program. The unique feature of the study is a stochastic formulation of technological learning. Most studies that include technological learning utilize deterministic learning curves in which a given amount of investment, production or capacity leads to a given cost reduction. In a stochastic framework, investment in a technology in the current period depends on uncertain learning that will result and lower future costs of the technology. Results under stochastic technological learning suggest that additional near-term investment relative to what is optimal under no learning can be justified at technological learning rates as low as 10–15%, and at the 20–25% rates commonly found in literature for advanced non-carbon technologies, significant additional near-term investment can be justified. We also find it can be socially optimal to invest more in non-carbon technology when the rate of learning is uncertain compared to the case where the learning rate is certain. Increasing marginal costs produce an asymmetric loss function that under uncertainty leads to more near-term non-carbon investment in attempt to avoid the situation of high non-carbon costs and an external economic environment that creates high demand for non-carbon technology.The authors gratefully acknowledge the financial support for this work provided by the U.S. Department of Energy, Office of Science under grants DE-SC0003906 and DE-FG02-94ER61937; the U.S. Environmental Protection Agency under grant XA-83600001-1; and other government, industry, and foundation sponsors of the Joint Program on the Science and Policy of Global Change

    HIV-associated salivary gland disease: a role for BK birus

    Get PDF
    HIV-associated salivary gland disease (HIV-SGD) is disfiguring and causes significant morbidity in the HIV population. Evidence detailing the epidemiology of HIV-SGD suggests the involvement of a viral opportunist in its pathogenesis, yet the specific etiology of HIV-SGD remains unclear. To determine the role for an opportunistic virus as the etiologic agent of HIV-SGD, we hypothesized that HIV-SGD was a manifestation of primary infection or reactivation with a DNA tumor virus, BKV, during immune suppression. The central hypothesis of this work is that viral pathogenesis is essential to the development of salivary gland disease. Results show for the first time that polyomavirus, BKV, is associated with HIV-SGD. BKV DNA, RNA, and protein were consistently detected in salivary gland biopsies and in the peripheral blood and oral fluids from HIV-SGD patients and not in control subjects

    BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    Get PDF
    BACKGROUND: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. RESULTS: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BK virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. CONCLUSION: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis

    French identity, Muslim identity: universalism, laïcité, and the Islamic challenge

    Get PDF
    Europe is currently embroiled in a debate over the challenges Muslim immigration poses to national identity and cultural cohesion. As nations seek the best way to accommodate the values of the mainstream while respecting the rights and beliefs of Muslim minorities, they must make decisions about what tolerance really means, and the extent to which it requires secularism. The uniquely French value of laĂŻcitĂ©, created from universalist ideals as a French solution to what was originally a French problem, is not incompatible with strong religious identity, but it is incompatible with the public expression of faith—an expression that many Muslims believe Islam requires. This essay will explore the reasons why the concept of French identity as universal and secular challenges France's Muslim minority (and vice versa) and why the application of laĂŻcitĂ© within a universalist framework is still the best way to foster the creation of a truly French Islam

    The zonation of Carp Lake River and the fish species that occupy each region.

    Full text link
    The purpose of this study was to understand how abiotic factors change along Carp Lake River and how these factors influence species abundance and distribution. Temperature, velocity, pH, conductivity, depth, nutrient levels, dissolved oxygen concentration, slope, and substrate were measured at four sites along the stream. The species of fish sound at each site were also recorded. We found that groundwater inputs at the third site had a significant impact on the abiotic factors observed. We explored the relationships between the observed trends in abiotic factors and the variation in species diversity over the course of the stream. This study concludes that differences in velocity, substrate, and depth influence the distribution of fish species along Carp Lake River. The presence of a lake at both ends of the stream also influenced species distribution.http://deepblue.lib.umich.edu/bitstream/2027.42/54712/1/3153.pd

    NITROGEN CYCLING IN A FOREST STREAM DETERMINED BY A 15N TRACER ADDITION

    Get PDF
    Nitrogen uptake and cycling was examined using a six‐week tracer addition of 15N‐labeled ammonium in early spring in Walker Branch, a first‐order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition, 15N was measured in water and in dominant biomass compartments upstream and at several locations downstream. Residence time of ammonium in stream water (5–6 min) and ammonium uptake lengths (23–27 m) were short and relatively constant during the addition. Uptake rates of NH4 were more variable, ranging from 22 to 37 ÎŒg N·m−2·min−1 and varying directly with changes in streamwater ammonium concentration (2.7–6.7 ÎŒg/L). The highest rates of ammonium uptake per unit area were by the liverwort Porella pinnata, decomposing leaves, and fine benthic organic matter (FBOM), although epilithon had the highest N uptake per unit biomass N. Nitrification rates and nitrate uptake lengths and rates were determined by fitting a nitrification/nitrate uptake model to the longitudinal profiles of 15N‐NO3 flux. Nitrification was an important sink for ammonium in stream water, accounting for 19% of the total ammonium uptake rate. Nitrate production via coupled regeneration/nitrification of organic N was about one‐half as large as nitrification of streamwater ammonium. Nitrate uptake lengths were longer and more variable than those for ammonium, ranging from 101 m to infinity. Nitrate uptake rate varied from 0 to 29 ÎŒg·m−2·min−1 and was ∌1.6 times greater than assimilatory ammonium uptake rate early in the tracer addition. A sixfold decline in instream gross primary production rate resulting from a sharp decline in light level with leaf emergence had little effect on ammonium uptake rate but reduced nitrate uptake rate by nearly 70%. At the end of the addition, 64–79% of added 15N was accounted for, either in biomass within the 125‐m stream reach (33–48%) or as export of 15N‐NH4 (4%), 15N‐NO3 (23%), and fine particulate organic matter (4%) from the reach. Much of the 15N not accounted for was probably lost downstream as transport of particulate organic N during a storm midway through the experiment or as dissolved organic N produced within the reach. Turnover rates of a large portion of the 15N taken up by biomass compartments were high (0.04–0.08 per day), although a substantial portion of the 15N in Porella (34%), FBOM (21%), and decomposing wood (17%) at the end of the addition was retained 75 d later, indicating relatively long‐term retention of some N taken up from water. In total, our results showed that ammonium retention and nitrification rates were high in Walker Branch, and that the downstream loss of N was primarily as nitrate and was controlled largely by nitrification, assimilatory demand for N, and availability of ammonium to meet that demand. Our results are consistent with recent 15N tracer experiments in N‐deficient forest soils that showed high rates of nitrification and the importance of nitrate uptake in regulating losses of N. Together these studies demonstrate the importance of 15N tracer experiments for improving our understanding of the complex processes controlling N cycling and loss in ecosystems

    Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition

    Get PDF
    Trophic relationships were examined using natural-abundance 13C and 15N analyses and a 15N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the 15N-tracer addition experiment, we added 15NH4, to stream water over a 6-wk period In early spring, and measured 15N:14N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the 15N addition provided data on natural-abundance 13C:12C and 15N:14N ratios. The natural-abundance 15N analysis proved to be of limited value in identifying food resources of macroinvertebrates because 15N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the 15N tracer results were not definitive. The 15N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N- turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the natural-abundance stable C and N isotope analyses and the experimental 15N tracer approach proved to be very useful tools for identifying food resources in this stream ecosystem

    Orbital Maintenance for the Wide Field Infrared Survey Telescope: The Effects of Solar Radiation Pressure and Navigation Accuracies on Station Keeping

    Get PDF
    The Wide-Field Infrared Survey Telescope (WFIRST), a NASA observatory designed to investigate dark energy and astrophysics, is planned for a launch in 2025 to orbit the Sun-Earth L2 (SEL2) Libration Point. Due to the instability of the SEL2 environment, WFIRST must perform maneuvers to remain in its mission orbit. This paper investigates how different error sources affect the resulting stationkeeping delta v for WFIRST. We study how Solar Radiation Pressure (SRP) modeling affects WFIRST's orbital motion and stability, and how SRP combined with Orbit Determination (OD) errors drive the stationkeeping maneuver magnitudes. Our goal is to determine the best way to model WFIRST's SRP so that we minimize its impact on total stationkeeping delta v required over the mission lifetime
    • 

    corecore