77 research outputs found
Weakly disordered absorbing-state phase transitions
The effects of quenched disorder on nonequilibrium phase transitions in the
directed percolation universality class are revisited. Using a strong-disorder
energy-space renormalization group, it is shown that for any amount of disorder
the critical behavior is controlled by an infinite-randomness fixed point in
the universality class of the random transverse-field Ising models. The
experimental relevance of our results are discussed.Comment: 4 pages, 2 eps figures; (v2) references and discussion on experiments
added; (v3) published version, minor typos corrected, some side discussions
dropped due to size constrain
One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder
Large-scale Monte Carlo simulations are used to explore the effect of
quenched disorder on one dimensional, non-equilibrium kinetic Ising models with
locally broken spin symmetry, at zero temperature (the symmetry is broken
through spin-flip rates that differ for '+' and '-' spins). The model is found
to exhibit a continuous phase transition to an absorbing state. The associated
critical behavior is studied at zero branching rate of kinks, through analysis
spreading of '+' and '-' spins and, of the kink density. Impurities exert a
strong effect on the critical behavior only for a particular choice of
parameters, corresponding to the strongly spin-anisotropic kinetic Ising model
introduced by Majumdar et al. Typically, disorder effects become evident for
impurity strengths such that diffusion is nearly blocked. In this regime, the
critical behavior is similar to that arising, for example, in the
one-dimensional diluted contact process, with Griffiths-like behavior for the
kink density. We find variable cluster exponents, which obey a hyperscaling
relation, and are similar to those reported by Cafiero et al. We also show that
the isotropic two-component AB -> 0 model is insensitive to reaction-disorder,
and that only logarithmic corrections arise, induced by strong disorder in the
diffusion rate.Comment: 10 pages, 13 figures. Final, accepted form in PRE, including a new
table summarizing the molde
Critical behavior and Griffiths effects in the disordered contact process
We study the nonequilibrium phase transition in the one-dimensional contact
process with quenched spatial disorder by means of large-scale Monte-Carlo
simulations for times up to and system sizes up to sites. In
agreement with recent predictions of an infinite-randomness fixed point, our
simulations demonstrate activated (exponential) dynamical scaling at the
critical point. The critical behavior turns out to be universal, even for weak
disorder. However, the approach to this asymptotic behavior is extremely slow,
with crossover times of the order of or larger. In the Griffiths region
between the clean and the dirty critical points, we find power-law dynamical
behavior with continuously varying exponents. We discuss the generality of our
findings and relate them to a broader theory of rare region effects at phase
transitions with quenched disorder.Comment: 10 pages, 8 eps figures, final version as publishe
First Passage Time in a Two-Layer System
As a first step in the first passage problem for passive tracer in stratified
porous media, we consider the case of a two-dimensional system consisting of
two layers with different convection velocities. Using a lattice generating
function formalism and a variety of analytic and numerical techniques, we
calculate the asymptotic behavior of the first passage time probability
distribution. We show analytically that the asymptotic distribution is a simple
exponential in time for any choice of the velocities. The decay constant is
given in terms of the largest eigenvalue of an operator related to a half-space
Green's function. For the anti-symmetric case of opposite velocities in the
layers, we show that the decay constant for system length crosses over from
behavior in diffusive limit to behavior in the convective
regime, where the crossover length is given in terms of the velocities.
We also have formulated a general self-consistency relation, from which we have
developed a recursive approach which is useful for studying the short time
behavior.Comment: LaTeX, 28 pages, 7 figures not include
Strong disorder fixed point in absorbing state phase transitions
The effect of quenched disorder on non-equilibrium phase transitions in the
directed percolation universality class is studied by a strong disorder
renormalization group approach and by density matrix renormalization group
calculations. We show that for sufficiently strong disorder the critical
behaviour is controlled by a strong disorder fixed point and in one dimension
the critical exponents are conjectured to be exact: \beta=(3-\sqrt{5})/2 and
\nu_\perp=2. For disorder strengths outside the attractive region of this fixed
point, disorder dependent critical exponents are detected. Existing numerical
results in two dimensions can be interpreted within a similar scenario.Comment: final version as accepted for PRL, contains new results in two
dimension
Generalized contact process on random environments
Spreading from a seed is studied by Monte Carlo simulation on a square
lattice with two types of sites affecting the rates of birth and death. These
systems exhibit a critical transition between survival and extinction. For
time- dependent background, this transition is equivalent to those found in
homogeneous systems (i.e. to directed percolation). For frozen backgrounds, the
appearance of Griffiths phase prevents the accurate analysis of this
transition. For long times in the subcritical region, spreading remains
localized in compact (rather than ramified) patches, and the average number of
occupied sites increases logarithmically in the surviving trials.Comment: 6 pages, 7 figure
Sliding blocks with random friction and absorbing random walks
With the purpose of explaining recent experimental findings, we study the
distribution of distances traversed by a block that
slides on an inclined plane and stops due to friction. A simple model in which
the friction coefficient is a random function of position is considered.
The problem of finding is equivalent to a First-Passage-Time
problem for a one-dimensional random walk with nonzero drift, whose exact
solution is well-known. From the exact solution of this problem we conclude
that: a) for inclination angles less than \theta_c=\tan(\av{\mu})
the average traversed distance \av{\lambda} is finite, and diverges when
as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at
the critical angle a power-law distribution of slidings is obtained:
. Our analytical results are confirmed by
numerical simulation, and are in partial agreement with the reported
experimental results. We discuss the possible reasons for the remaining
discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.
Instability of metal-insulator transition against thermal cycling in phase separated Cr-doped manganites
We show that metal-insulator transition in Pr0.5Ca0.5Mn1-xCrxO3 (x =
0.015-0.025) is unstable against thermal cycling. Insulator-metal transition
shifts down and low temperature resistivity increases each time when the sample
is cycled between a starting temperature TS and a final temperature TF. The
effect is dramatic lower is x. Insulator-metal transition in x = 0.015 can be
completely destroyed by thermal cycling in absence of magnetic field as well as
under H = 2 T. Magnetic measurements suggest that ferromagnetic phase fraction
decreases with thermal cycling. We suggest that increase in strains in
ferromagnetic- charge ordered interface could be a possible origin of the
observed effect.Comment: 14 pages, 5 figures and 2 tables (revised
Diffusion and Trapping on a one-dimensional lattice
The properties of a particle diffusing on a one-dimensional lattice where at
each site a random barrier and a random trap act simultaneously on the particle
are investigated by numerical and analytical techniques. The combined effect of
disorder and traps yields a decreasing survival probability with broad
distribution (log-normal). Exact enumerations, effective-medium approximation
and spectral analysis are employed. This one-dimensional model shows rather
rich behaviours which were previously believed to exist only in higher
dimensionality. The possibility of a trapping-dominated super universal class
is suggested.Comment: 20 pages, Revtex 3.0, 13 figures in compressed format using uufiles
command, to appear in Phys. Rev. E, for an hard copy or problems e-mail to:
[email protected]
Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"
We consider a system of coupled classical harmonic oscillators with spatially
fluctuating nearest-neighbor force constants on a simple cubic lattice. The
model is solved both by numerically diagonalizing the Hamiltonian and by
applying the single-bond coherent potential approximation. The results for the
density of states are in excellent agreement with each other. As
the degree of disorder is increased the system becomes unstable due to the
presence of negative force constants. If the system is near the borderline of
stability a low-frequency peak appears in the reduced density of states
as a precursor of the instability. We argue that this peak
is the analogon of the "boson peak", observed in structural glasses. By means
of the level distance statistics we show that the peak is not associated with
localized states
- …