4 research outputs found

    Propionate induces cross-tolerance to TLR1/2 and TLR4 agonists in an IFIT-dependent manner

    No full text
    In this study, we have identified Interferon-stimulated genes (ISGs), especially IFIT1, 2 and 3, as target genes of propionate-induced signalling in the human epithelial cell line A549, the monocytic cell line THP-1 as well as in primary, human peripheral blood-derived macrophages (PBMs). Induction of the IFIT gene family by propionate negatively regulates TLR-induced signalling. Propionate stimulation results in downregulation of proinflammatory cytokine and chemokine expression as well as MHC class II expression upon TLR1/2 and TLR4 re-stimulation in A549 and THP-1 cells as well as in PBMs, demonstrating that propionate-induced signalling is involved in the induction of TLR cross-tolerance. Signalling pathway analysis clearly demonstrates that propionate-induced IFIT expression is mediated by FFAR2 in a G alpha q/11 signalling pathway-dependent manner. Furthermore, propionate-induced IFIT expression is dependent on IFN type I and/or type III-mediated signalling since pre-treatment of A549 cells with Ruxolitinib, a specific JAK1/2 tyrosine kinase inhibitor, prior to stimulation with propionate, inhibited the upregulation of IFIT1 expression. The hypo-responsiveness towards TLR1/2 and TLR4 agonists seems to be mediated by different members of the IFIT gene family in a cell type-specific manner. Collectively, our data indicate that propionate-induced signalling controls pro-inflammatory responses by activation of IFN type I and/or type III-induced and IFIT-mediated counter-regulatory mechanisms in order to protect against exacerbating inflammatory reactions

    Chronic Inflammation Increases the Sensitivity of Mouse Treg for TNFR2 Costimulation

    No full text
    TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. In vitro, TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported in vitro expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. In vivo application of TNCscTNF80-induced mild myelopoiesis in naïve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in naïve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in naïve mice can lead to immune suppression in vivo. These findings support the important role of TNFR2 for Treg cells in immune regulation

    Immature mouse granulocytic myeloid cells are characterized by production of ficolin-B

    No full text
    Ficolins activate the lectin pathway of the complement system upon binding to carbohydrate patterns on pathogens. To characterize the producer cells of ficolin-B the expression of mouse ficolin-B, the orthologue of human M-ficolin, was studied in macrophages and dendritic cells during differentiation from bone marrow cells, in primary granulocytes, and during differentiation of granulocytes derived from ER-Hoxb8 cells. Expression of ficolin-B mRNA declined in all myeloid cell types to low levels during terminal differentiation. However, in contrast to macrophages and dendritic cells, ficolin-B expression was enhanced upon activation in granulocytes. High expression of ficolin-B was observed in primary immature neutrophilic CD11b+ Ly-6Cint Ly-6Ghigh granulocytes when isolated from the bone marrow, in particular during sepsis. Ficolin-B was demonstrated in lysates of primary granulocytes, ER-Hoxb8-derived granulocytes, bone marrow-derived macrophages, and dendritic cells. Native ficolin-B from cell lysates and supernatants of granulocytes activated the lectin pathway as measured by binding to MASP-2 and inducing C4 deposition. Specific staining demonstrated intra-cellular or cell associated ficolin-B protein in activated immature granulocytes deposited in a granular fashion. This study shows that ficolin-B is stored in and set free from immature granulocytic myeloid cells indicating a role in the early infection-induced cellular response of these inflammatory cells.Fil: Weber Steffens, Dorothea. Universitat Regensburg; AlemaniaFil: Hunold, Katja. Universitat Regensburg; AlemaniaFil: Kürschner, Johanna. Universitat Regensburg; AlemaniaFil: Giraldez Martinez, Sonia. Universitat Regensburg; AlemaniaFil: Elumalai, Preetham. Universitat Regensburg; AlemaniaFil: Schmidt, Dominic. Universitat Regensburg; AlemaniaFil: Trevani, Analía Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Runza, Valeria L.. Universitat Regensburg; AlemaniaFil: Männel, Daniela N.. Universitat Regensburg; Alemani
    corecore