52,777 research outputs found

    Quark deconfinement in high-mass neutron stars

    Get PDF
    In this paper, we explore whether or not quark deconfinement may occur in high-mass neutron stars such as J1614-2230 (1.97 \pm 0.04 M_Sun) and J0348+0432 (2.01 \pm 0.04 M_Sun). Our study is based on a non-local extension of the SU(3) Nambu Jona-Lasinio (n3NJL) model with repulsive vector interactions among the quarks. This model goes beyond the frequently used local version of the Nambu Jona-Lasinio (NJL) model by accounting for several key features of QCD which are not part of the local model. Confined hadronic matter is treated in the framework of non-linear relativistic mean field theory. We find that both the local as well as the non-local NJL model predict the existence of extended regions of mixed quark-hadron (quark-hybrid) matter in high-mass neutron stars with masses of 2.1 to 2.4 M_Sun. Pure quark matter in the cores of neutron stars is obtained for certain parametrizations of the hadronic lagrangian and choices of the vector repulsion among quarks. The radii of high-mass neutron stars with quark-hybrid matter and/or pure quark matter cores in their centers are found to lie in the canonical range of 12 to 13 km.Comment: 31 pages, 17 figures, PRC accepted versio

    Quark-hybrid matter in the cores of massive neutron stars

    Get PDF
    Using a nonlocal extension of the SU(3) Nambu-Jona Lasinio model, which reproduces several of the key features of Quantum Chromodynamics, we show that mixed phases of deconfined quarks and confined hadrons (quark-hybrid matter) may exist in the cores of neutron stars as massive as around 2.1 M_Sun. The radii of these objects are found to be in the canonical range of ∌12−13\sim 12-13 km. According to our study, the transition to pure quark matter does not occur in stable neutron stars, but is shifted to neutron stars which are unstable against radial oscillations. The implications of our study for the recently discovered, massive neutron star PSR J1614-2230, whose gravitational mass is 1.97±0.04MSun1.97 \pm 0.04 M_Sun, are that this neutron star may contain an extended region of quark-hybrid matter at it center, but no pure quark matter.Comment: 13 pages, 3 figure

    Electron shielding studies - Experimental program Technical summary report, 1 Aug. 1968 - 31 Dec. 1969

    Get PDF
    Electron shielding and bremsstrahlung energy spectra for tin, gold, and silve

    Cooling of Sr to high phase-space density by laser and sympathetic cooling in isotopic mixtures

    Get PDF
    Based on an experimental study of two-body and three-body collisions in ultracold strontium samples, a novel optical-sympathetic cooling method in isotopic mixtures is demonstrated. Without evaporative cooling, a phase-space density of 6×10−26\times10^{-2} is obtained with a high spatial density that should allow to overcome the difficulties encountered so far to reach quantum degeneracy for Sr atoms.Comment: 5 pages, 4 figure

    Non-monotonic thermal Casimir force from geometry-temperature interplay

    Full text link
    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a non-monotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.Comment: 4 pages, 4 figure
    • 

    corecore