1,695 research outputs found

    Determination of the Local Dark Matter Density in our Galaxy

    Full text link
    The rotation curve, the total mass and the gravitational potential of the Galaxy are sensitive measurements of the dark matter halo profile. In this publication cuspy and cored DM halo profiles are analysed with respect to recent astronomical constraints in order to constrain the shape of the Galactic DM halo and the local DM density. All Galactic density components (luminous matter and DM) are parametrized. Then the total density distribution is constrained by astronomical observations: 1) the total mass of the Galaxy, 2) the total matter density at the position of the Sun, 3) the surface density of the visible matter, 4) the surface density of the total matter in the vicinity of the Sun, 5) the rotation speed of the Sun and 6) the shape of the velocity distribution within and above the Galactic disc. The mass model of the Galaxy is mainly constrained by the local matter density (Oort limit), the rotation speed of the Sun and the total mass of the Galaxy from tracer stars in the halo. It is shown from a statistical chi^2 fit to all data that the local DM density is strongly positively (negatively) correlated with the scale length of the DM halo (baryonic disc). Since these scale lengths are poorly constrained the local DM density can vary from 0.2 to 0.4 GeV/cm^3 (0.005 - 0.01 M_sun/pc^3) for a spherical DM halo profile and allowing total Galaxy masses up to 2 * 10^12 M_sun. For oblate DM halos and dark matter discs, as predicted in recent N-body simulations, the local DM density can be increased significantly.Comment: 10 pages, 8 figure

    Autonomous capillary systems for life science research and medical diagnostics

    Get PDF
    In autonomous capillary systems (CS) minute amounts of liquid are transported owing to capillary forces. Such CSs are appealing due to their portability, flexibility, and the exceptional physical behavior of liquids in micrometer sized microchannels, in particular, capillarity and short diffusion times. CSs have shown to be a promising technology for miniaturized immunoassays in life science research and diagnostics. Building on existing experimental demonstrations of immunoassays in CSs, a theoretical model of such immunoassays is implemented, tools and CSs for performing immunoassays are developed, key functional elements of CSs such as capillary pumps and valves are explored experimentally, and a proof-of-concept of the ultimate goal of one-step immunoassays are given in this work. For the theoretical modeling of immunoassays in CSs a finite difference algorithm is applied to delineate the role of the transport of analyte molecules in the microchannel (convection and diffusion), the kinetics of binding between the analyte and the capture antibodies, and the surface density of the capture antibody on the assay. The model shows that assays can be greatly optimized by varying the flow velocity of the solution of analyte in the microchannels. The model also shows how much the analyte-antibody binding constant and the surface density of the capture antibodies influence the performance of the assay. We derive strategies to optimize assays toward maximal sensitivity, minimal sample volume requirement or fast performance. A method using evaporation for controlling the flow rate in CSs was developed for maximum flexibility for developing assays. The method allows to use small CSs that initially are filled by capillary forces and then provide a well defined area of the liquid-air interface from which liquid can evaporate. Temperature and humidity are continuously measured and Peltier-elements are used to adjust the temperatures in multiple areas of the CSs relative to the dew-point. Thereby flow rates in the range from ~1.2 nL s−1 to ~30 pL s−1 could be achieved in the microchannels. This method was then used for screening cells for surface receptors. CSs, that do not need any peripherals for controlling flow rates become even more appealing. We explored the filling behavior of such CSs having microchannels of various length and large capillary pumps. The capillary pumps comprise microstructures of various sizes and shapes, which are spaced to encode certain capillary pressures. The spacing and shape of the microstructures is also used to orient the filling front to obtain a reliable filling behavior and to minimize the risk of entrapping air. We show how two capillary pumps having different hydrodynamic properties can be connected to program a sequence of slow and fast flow rates in CSs. Liquid filling CSs can hardly be stopped, but in some cases it might be beneficial to do so. In a separate chapter we explore how microstructures need to be designed to use capillary forces to stop, time, or trigger liquids. Besides well-defined flow rates in CSs accurately patterned capture antibodies (cAbs) are key for performing high-sensitive surface immunoassays in CSs. We present a method compatible with mass fabrication for patterning cAbs in dense lines of up to 8 lines per millimeter. These cAbs are used with CSs that are optimized for convenient handling, pipetting of solutions, pumping of liquids such as human serum, and visualization of signals for fluorescence immunoassays to detect c-reactive protein (CRP) with a sensitivity of 0.9 ng mL−1 (7.8 pM) from 1 uL of CRP-spiked human serum, within 11 minutes, with 4 pipetting steps, and a total volume of sample and reagents of <1.5 uL. CSs for diagnostic applications have different requirements than CSs that are used as a research tool in life sciences, where a high flexibility and performance primes over the ease of use and portability of the CSs. We give a proof-of-concept for one-step immunoassays based on CSs which we think can be the base for developing portable diagnostics for point-of-care applications. All reagents are preloaded in the CSs. A sample loaded in the CSs redissolves and reconstitutes the detection antibodies (dAbs), analyte-dAb-complexes are formed and detected downstream in the CSs. A user only needs to load a sample and measure the result using a fluorescence microscope or scanner. C-reactive protein was detected in human serum at clinical concentrations within 10 minutes and using only 2 uL of sample

    Trilepton Final State from Neutralino-Chargino Production in mSUGRA

    Get PDF
    The direct production of neutralino-chargino chi^0_2 chi^pm_1 pairs in the mSUGRA scenario with decays into pure trilepton final states has a significant cross section for low neutralino masses. The trilepton signature was studied with the full and fast CMS detector simulations. The 5 sigma signal can be observed in the dilepton invariant mass distribution at the integrated luminosity of L_int>30 fb^-1 for m_1/2 <180 GeV

    Randomised controlled trial of gabapentin in Complex Regional Pain Syndrome type 1 [ISRCTN84121379]

    Get PDF
    BACKGROUND: Complex Regional Pain Syndrome type one (CRPS I) or formerly Reflex Sympathetic Dystrophy (RSD) is a disabling syndrome, in which a painful limb is accompanied by varying symptoms. Neuropathic pain is a prominent feature of CRPS I, and is often refractory to treatment. Since gabapentin is an anticonvulsant with a proven analgesic effect in various neuropathic pain syndromes, we sought to study the efficacy of the anticonvulsant gabapentin as treatment for pain in patients with CRPS I. METHODS: We did a randomized double blind placebo controlled crossover study with two three-weeks treatment periods with gabapentin and placebo separated by a two-weeks washout period. Patients started at random with gabapentin or placebo, which was administered in identical capsules three times daily. We included 58 patients with CRPS type 1. RESULTS: Patients reported significant pain relief in favor of gabapentin in the first period. Therapy effect in the second period was less; finally resulting in no significant effect combining results of both periods. The CRPS patients had sensory deficits at baseline. We found that this sensory deficit was significantly reversed in gabapentin users in comparison to placebo users. CONCLUSIONS: Gabapentin had a mild effect on pain in CRPS I. It significantly reduced the sensory deficit in the affected limb. A subpopulation of CRPS patients may benefit from gabapentin

    Identification and characterization of nanobodies targeting the EphA4 receptor

    Get PDF
    The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. Weidentified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb39 andNb53 inhibited ephrin-induced phosphorylationoftheEphA4proteininacell-basedassay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodiesmaydeservefurtherevaluationaspotentialtherapeutics in disorders in which EphA4-mediated signaling plays a role

    Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless

    Get PDF
    AbstractThe Pax6 genes eyeless (ey) and twin of eyeless (toy) are upstream regulators in the retinal determination gene network (RDGN), which instructs the formation of the adult eye primordium in Drosophila. Most animals possess a singleton Pax6 ortholog, but the dependence of eye development on Pax6 is widely conserved. A rare exception is given by the larval eyes of Drosophila, which develop independently of ey and toy. To obtain insight into the origin of differential larval and adult eye regulation, we studied the function of toy and ey in the red flour beetle Tribolium castaneum. We find that single and combinatorial knockdown of toy and ey affect larval eye development strongly but adult eye development only mildly in this primitive hemimetabolous species. Compound eye-loss, however, was provoked when ey and toy were RNAi-silenced in combination with the early retinal gene dachshund (dac). We propose that these data reflect a role of Pax6 during regional specification in the developing head and that the subsequent maintenance and growth of the adult eye primordium is regulated partly by redundant and partly by specific functions of toy, ey and dac in Tribolium. The results from embryonic knockdown and comparative protein sequence analysis lead us further to conclude that Tribolium represents an ancestral state of redundant control by ey and toy

    Correction by the ercc2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells

    Get PDF
    Trichothiodystrophy (TTD) is a rare genetic disease with heterogeneous clinical features associated with specific deficiencies in nucleotide excision repair. Patients have brittle hair due to a reduced content of cysteine-rich matrix proteins. About 50% of the cases reported in the literature are photosensitive. In these patients an altered cellular response to UV, due to a specific deficiency in nucleotide excision repair, has been observed. The majority of repairdefective TTD patients have been assigned by complementation analysis to group D of xeroderma pigmentosum (XP). Recently, the human excision repair gene ERCC2 has been shown to correct the UV sensitivity of XP-D fibroblasts. In this work we describe the effect of ERCC2 on the DNA repair deficient phenotype of XP-D and on two repair-defective TTD cell strains (TTD1VI and TTD2VI) assigned by complementation analysis to group D of XP. ERCC2 cDNA, cloned into a mammalian expression vector, was introduced into TTD and XP fibroblasts via DNA-mediated transfection or microneedle injection. UV sensitivity and cellular DNA repair properties, including unscheduled DNA synthesis and reactivation of a UVirradiated plasmid containing the chloramphenicol acetyltransferase reporter gene (pRSVCat), were corrected to wild-type levels in both TTD and XP-D cells. These data show that a functional ERCC2 gene is sufficient to reestablish a wild-type DNA repair phenotype in TTD1VI and TTD2VI cells, confirming the genetic relationship between TTD and XP-D. Furthermore, our findings suggest that mutations at the ERCC2 locus are responsible for causing a similar phenotype in TTD and XP-D cells in response to UV irradiation, but produce quite different clinical symptorns.</p

    Correction by the ercc2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells

    Get PDF
    Trichothiodystrophy (TTD) is a rare genetic disease with heterogeneous clinical features associated with specific deficiencies in nucleotide excision repair. Patients have brittle hair due to a reduced content of cysteine-rich matrix proteins. About 50% of the cases reported in the literature are photosensitive. In these patients an altered cellular response to UV, due to a specific deficiency in nucleotide excision repair, has been observed. The majority of repairdefective TTD patients have been assigned by complementation analysis to group D of xeroderma pigmentosum (XP). Recently, the human excision repair gene ERCC2 has been shown to correct the UV sensitivity of XP-D fibroblasts. In this work we describe the effect of ERCC2 on the DNA repair deficient phenotype of XP-D and on two repair-defective TTD cell strains (TTD1VI and TTD2VI) assigned by complementation analysis to group D of XP. ERCC2 cDNA, cloned into a mammalian expression vector, was introduced into TTD and XP fibroblasts via DNA-mediated transfection or microneedle injection. UV sensitivity and cellular DNA repair properties, including unscheduled DNA synthesis and reactivation of a UVirradiated plasmid containing the chloramphenicol acetyltransferase reporter gene (pRSVCat), were corrected to wild-type levels in both TTD and XP-D cells. These data show that a functional ERCC2 gene is sufficient to reestablish a wild-type DNA repair phenotype in TTD1VI and TTD2VI cells, confirming the genetic relationship between TTD and XP-D. Furthermore, our findings suggest that mutations at the ERCC2 locus are responsible for causing a similar phenotype in TTD and XP-D cells in response to UV irradiation, but produce quite different clinical symptorns.</p

    Deterioration of Parkinson's disease during hospitalization: survey of 684 patients

    Get PDF
    Abstract Background A substantial fraction of Parkinson's disease patients deteriorate during hospitalisation, but the precise proportion and the reasons why have not been studied systematically and the focus has been on surgical wards and on Accident & Emergency departments. We assessed the prevalence and risk factors of deterioration of Parkinson's disease symptoms during hospitalization, including all wards. Methods We invited Parkinson's disease patients from three neurology departments in The Netherlands to answer a standardised questionnaire on general, disease and hospital related issues. Patients who had been hospitalized in the previous year were included and analysed. Possible risk factors for Parkinson's disease deterioration were identified. Proportions were analysed using the Chi-Square test and a logistic regression analysis was performed. Results Eighteen percent of 684 Parkinson's disease patients had been hospitalized at least once in the last year. Twenty-one percent experienced deterioration of motor symptoms, 33% did have one or more complications and 26% had received incorrect anti-Parkinson's medication. There were no statistically significant differences for these variables between admissions on neurologic or non-neurologic wards and between having surgery or not. Incorrect medication during hospitalization was significantly associated with higher risk (OR 5.8, CI 2.5-13.7) of deterioration, as were having infections (OR 6.7 CI 1.8-24.7). A higher levodopa equivalent dose per day was a significant risk factor for deterioration. When adjusting for different variables, wrong medication distribution was the most important risk factor for deterioration. Conclusions Incorrect medication and infections are the important risk factors for deterioration of Parkinson's disease patients both for admissions with and without surgery and both for admissions on neurologic and non-neurologic wards. Measures should be taken to improve care and incorporated in guidelines.</p
    corecore