364 research outputs found
Case Report: Familial Gastric Cancer and Chordoma in the Same Family
Gastric cancers are the second most common malignancy in the world and represent a major burden to all societies even though the incidence of disease is decreasing in the industrialized world. The aetiology of the disease is complex and is believed to be primarily due to environmental factors but a small proportion of cases are recognised as being associated with genetic factors. Two inherited forms of stomach cancer have been identified, one which is associated with familial clusterings of stomach cancer and the other being a subgroup of families that belong to hereditary non polyposis colorectal cancer (or Lynch syndrome). In this report we present a small nuclear family which is unusual in that there is a clustering of malignancy which includes stomach cancer, colorectal cancer and chordoma. Genetic analysis failed to reveal any causative mutation in genes associated with HNPCC or in E-cadherin. Together, the clinical picture in this family may indicate that other genetic factors are behind this family's clustering of malignancy
Enhanced secondary organic aerosol formation due to water uptake by fine particles
This study characterizes the partitioning behavior of a significant fraction of the ambient organic aerosol through simultaneous measurements of gas and particle watersoluble organic carbon (WSOC). During the summer in Atlanta, WSOC gas/particle partitioning showed a strong RH dependence that was attributed to particulate liquid water. At elevated RH levels (\u3e70%) a significant increase in WSOC partitioning to the particle phase was observed and followed the predicted water uptake by fine particles. The enhancement in particle-phase partitioning translated to increased median particle WSOC concentrations ranging from 0.3 –0.9 mgCm3 . The results provide a detailed overview of the WSOC partitioning behavior in the summertime in an urban region dominated by biogenic emissions, and indicate that secondary organic aerosol formation involving partitioning to liquid water may be a significant aerosol formation route that is generally not considered. Citation: Hennigan, C. J., M. H. Bergin, J. E. Dibb, and R. J. Weber (2008), Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophys. Res. Lett., 35, L18801, doi:10.1029/2008GL035046
Direct evidence of N aggregation and diffusion in Au+Au+ irradiated GaN
A surface amorphized layer and a buried disordered structure were created in gallium nitride (GaN) irradiated using 1.0 MeV1.0MeV Au+Au+ ions to fluences of 25 and 70 Au+/nm270Au+∕nm2 at room temperature. Bubbles of N2N2 gas within both the amorphized and disordered GaN are formed. A gradient profile with a lower N concentration in the amorphized region is observed, which provides direct evidence of N loss by diffusion in the Au+Au+ irradiated GaN. These results are important to understanding the amorphization processes in GaN and may have significant implications for the design and fabrication of GaN-based devices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87811/2/021903_1.pd
Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources
We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls
Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign
A particle-into-liquid sampler coupled to a total organic carbon analyzer (PILS-TOC) quantified particulate water-soluble organic carbon (WSOC) mass concentrations during the May 2010 deployment of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter in the CalNex field study. WSOC data collected during 16 flights provide the first spatiotemporal maps of WSOC in the San Joaquin Valley, Los Angeles Basin, and outflow regions of the Basin. WSOC was consistently higher in concentration within the Los Angeles Basin, where sea breeze transport and Basin topography strongly influence the spatial distribution of WSOC. The highest WSOC levels were associated with fire plumes, highlighting the importance of both primary and secondary sources for WSOC in the region. Residual pollution layers enriched with WSOC are observed aloft up to an altitude of 3.2 km and the highest WSOC levels for each flight were typically observed above 500 m. Simultaneous ground WSOC measurements during aircraft overpasses in Pasadena and Riverside typically exhibit lower levels, especially when relative humidity (RH) was higher aloft suggestive of the influence of aerosol-phase water. This points to the underestimation of the radiative effects of WSOC when using only surface measurements. Reduced aerosol-phase water in the eastern desert outflow region likely promotes the re-partitioning of WSOC to the gas phase and suppression of processes to produce these species (partitioning, multiphase chemistry, photolytic production); as a result, WSOC is reduced relative to sulfate (but not as much as nitrate) as aerosol is advected from the Basin to the outflows
Radiation resistance of gadolinium zirconate pyrochlore
The pyrochlore structure-type is a proposed host phase for the immobilization of plutonium. Previous studies have shown that a wide variety of actinide pyrochlores can be synthesized. Gadolinium zirconate with the pyrochlore structure has been shown to be remarkably radiation resistant. We report additional results of ion-beam irradiation studies. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87570/2/15_1.pd
Recommended from our members
Apportionment of primary and secondary organic aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1)
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each of these methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70−90% were observed during midday periods, whereas minimum SOA contributions of ~45% were observed during peak morning traffic periods. These results are contrary to previous estimates of SOA throughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed
Recommended from our members
A Large Organic Aerosol Source in the Free Troposphere Missing from Current Models
Aircraft measurements of organic carbon (OC) aerosol by two independent methods over the NW Pacific during the ACE-Asia campaign reveal unexpectedly high concentrations in the free troposphere (FT). Concentrations average 4 μg sm−3 in the 2–6.5 km column with little vertical gradient. These values are 10–100 times higher than computed with a global chemical transport model (CTM) including a standard 2-product simulation of secondary organic aerosol (SOA) formation based on empirical fits to smog chamber data. The same CTM reproduces the observed vertical profiles of sulfate and elemental carbon aerosols, which indicate sharp decreases from the boundary layer to the FT due to wet scavenging. Our results suggest a large, sustained source of SOA in the FT from oxidation of long-lived volatile organic compounds. We find that this SOA is the dominant component of aerosol mass in the FT, with implications for intercontinental pollution transport and radiative forcing of climate.Earth and Planetary SciencesEngineering and Applied Science
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
We conducted a 2-year study utilizing a network of fixed sites with sampling throughout an extended prescribed burning period to characterize the emissions and evolution of smoke from silvicultural prescribed burning at a military base in the southeastern USA. The measurement approach and an assessment of the instrument performance are described. Smoke sources, including those within and off the base, are identified, and plume ages are determined to quantify emissions and study the evolution of smoke PM2.5 (particulate matter with aerodynamic diameters 2.5 µm or smaller) mass, black carbon (BC), and brown carbon (BrC). Over the 2021 and 2022 prescribed burning seasons (nominally January to May), we identified 64 smoke events based on high levels of PM2.5 mass, BC, BrC, and carbon monoxide (CO), of which 61 were linked to a specific burning area. Smoke transport times were estimated in two ways: using the mean wind speed and the distance between the fire and the measurement site, and from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectories. PM2.5 emission ratios based on ΔPM2.5 mass / ΔCO for fresh smoke (age ≤ 1 h) ranged between 0.04 and 0.18 µg m−3 ppb−1 with a mean of 0.117 µg m−3 ppb−1 (median of 0.121 µg m−3 ppb−1). Both the mean emission ratio and the variability were similar to findings from other prescribed fire studies but were lower than those from wildfires. The mean emission ratios of BC and BrC were 0.014 µg m−3 ppb−1 and 0.442 Mm−1 ppb−1, respectively. Ozone enhancements (ΔO3) were always observed in plumes detected in the afternoon. ΔPM2.5 mass / ΔCO was observed to increase with plume age in all of the ozone-enhanced plumes, suggesting photochemical secondary aerosol formation. In contrast, ΔBrC/ΔCO was not found to vary with plume ages less than 8 h during photochemically active periods.</p
- …