6,845 research outputs found

    Strict Neutrality: The Next Step in First Amendment Interpretation

    Get PDF

    Toward a Theory of Civil Disobedience

    Get PDF

    Containerless processing of amorphous ceramics

    Get PDF
    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials

    Organizing Production in a Large Economy with Costly Communication

    Get PDF
    We show that in a large production economy, the cost of collecting the information required by a planner to set nearly optimal prices is negligible relative to the total output of the economy. The cost of collecting the information required to set a nearly optimal production plan for each ļ¬rm in the economy is not negligible. This conclusion stands in contrast to common opinion that determining optimal prices requires as much information as determining an optimal plan

    Instantaneous Capture and Mineralization of Flue Gas Carbon Dioxide: Pilot Scale Study

    Get PDF
    Multiple CO2 capture and storage (CCS) processes are required to address anthropogenic CO2 problems. However, a method which can directly capture and mineralize CO2 at a point source, under actual field conditions, has advantages and could help offset the cost associated with the conventional CCS technologies. The mineral carbonation (MC), a process of converting CO2 into stable minerals (mineralization), has been studied extensively to store CO2. However, most of the MC studies have been largely investigated at laboratory scale. Objectives of this research were to develop a pilot scale AMC (accelerated mineral carbonation) process and test the effects of flue gas moisture content on carbonation of fly ash particles. A pilot scale AMC process consisting of a moisture reducing drum (MRD), a heater/humidifier, and a fluidized-bed reactor (FBR) was developed and tested by reacting flue gas with fly ash particles at one of the largest coal-fired power plants (2120 MW) in the USA. The experiments were conducted over a period of 2 hr at ~ 300 SCFM flow-rates, at a controlled pressure (115.1 kPa), and under different flue gas moisture contents (2-16%). The flue gas CO2 and SO2 concentrations were monitored before and during the experiments by an industrial grade gas analyzer. Fly ash samples were collected from the reactor sample port from 0-120 minutes and analyzed for total inorganic carbon (C), sulfur (S), and mercury (Hg). From C, S, and Hg concentrations, %calcium carbonate (CaCO3), %sulfate (SO42-), and %mercury carbonate (HgCO3) were calculated, respectively. Results suggested significant mineralization of flue gas CO2, SO2, and Hg within 10-15 minutes of reaction. Among different moisture conditions, ~16% showed highest conversion of flue gas CO2 and SO2 to %CaCO3 and %SO42- in fly ash samples. For example, an increase of almost 4% in CaCO3 content of fly ash was observed. Overall, the AMC process is cost-effective with minimum carbon footprint and can be retrofitted to coal fired power plants (existing and/or new) as a post-combustion unit to minimize flue gas CO2, SO2, and Hg emissions into the atmosphere. Used in conjunction with capture and geologic sequestration, the AMC process has the potential to reduce overall cost associated with CO2 separation/compression/transportation/pore space/brine water treatment. It could also help protect sensitive amines and carbon filters used in flue gas CO2 capture and separation process and extend their life

    The host galaxies of strong CaII QSO absorption systems at z<0.5

    Full text link
    We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.Comment: Accepted for publication in MNRAS, 14 pages, 9 figures. Version with full resolution images available at http://www.ast.cam.ac.uk/~bjz/papers/Zych_etal_2007a.pd

    Hindcasting of nutrient loadings from its catchment on a highly valuable coastal lagoon: the example of the Fleet, Dorset, UK, 1866ā€“2004

    Get PDF
    BACKGROUND: Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866ā€“2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. RESULTS: Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49ā€“54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. CONCLUSION: The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'

    Reflections on Poverty and Prospects for Growth in the Mozambican Rural Sector

    Get PDF
    Community/Rural/Urban Development, Food Security and Poverty, Downloads July 2008-July 2009: 10,
    • ā€¦
    corecore