49 research outputs found

    Microbes Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction

    Get PDF
    Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth\u27s crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy

    Draft Genome Sequence of the Anaerobic, Nitrate-Dependent, Fe(II)-Oxidizing Bacterium \u3ci\u3ePseudogulbenkiania ferrooxidans\u3c/i\u3e Strain 2002

    Get PDF
    Pseudogulbenkiania ferrooxidans strain 2002 was isolated as a lithoautotrophic, Fe(II)-oxidizing, nitrate-reducing bacterium. Phylogenetically, it is in a clade within the family Neisseriaceae in the order Nessieriales of the class Betaproteobacteria. It is anticipated that comparative genomic analysis of this strain with other nitrate-dependent, Fe(II)-oxidizing bacteria will aid in the elucidation of the genetics and biochemistry underlying this critically important geochemical metabolism

    Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, \u3ci\u3eBacillus\u3c/i\u3e sp. isolated from salt flat sediments of Soap Lake

    Get PDF
    A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO2. Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O2 as alternative electron acceptors. Optimum growth was observed at 30°C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes

    Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, \u3ci\u3eBacillus\u3c/i\u3e sp. isolated from salt flat sediments of Soap Lake

    Get PDF
    A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO2. Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O2 as alternative electron acceptors. Optimum growth was observed at 30°C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes

    Occurrence of arsenite in surface and groundwater associated with a perennial stream located in Western Nebraska, USA

    Get PDF
    Dissolved arsenic typically results from chemical weathering of arsenic rich sediments and is most often found in oxidized forms in surface water. The mobility of arsenic is controlled by its valence state and also by its association with iron oxides minerals, the forms of which are both influenced by abiotic and biotic processes in aqueous environment. In this study, speciation methods were used to measure and confirm the presence of reduced arsenic species in the surface water of Frenchman creek, a gaining stream that crosses the Colorado- Nebraska border. Selective extraction analysis of aquifer and stream bed sediments shows that the bulk of the arsenic occurs with labile iron-rich oxy(hydroxide) minerals. Total dissolved arsenic in surface and groundwater ranged from ~3–18 μg L–1, and reduced arsenic species comprise about 41% of the total dissolved arsenic (16.0 μg L–1) in Frenchman creek. Leachable arsenic in the aquifer sediment samples ranged up to 1553 μg kg–1, while samples from Frenchman creek bed sediments contained 4218 μg kg–1. Dynamic surface and groundwater interaction sustains arsenite in iron-rich surface headwaters, and the implied toxicity of reduced arsenic in this hydrogeological setting, which can be important in surface water environments around the globe

    Microbial Community of Saline, Alkaline Lakes in the Nebraska Sandhills Based on 16S rRNA Gene Amplicon Sequence Data

    Get PDF
    The Nebraska Sandhills region contains over 1,500 geochemically diverse interdunal lakes, some of which are potassium rich, alkaline, and hypersaline. Here, we report 16S rRNA amplicon pyrosequencing data on the water and sediment microbial communities of eight alkaline lakes in the Sandhills of western Nebraska

    Completed Genome Sequence of the Anaerobic Iron-Oxidizing Bacterium \u3ci\u3eAcidovorax ebreus\u3c/i\u3e Strain TPSY

    Get PDF
    Acidovorax ebreus strain TPSY is the first anaerobic nitrate-dependent Fe(II) oxidizer for which there is a completed genome sequence. Preliminary protein annotation revealed an organism optimized for survival in a complex environmental system. Here, we briefly report the completed and annotated genome sequence of strain TPSY

    Nitrate-Stimulated Release of Naturally Occurring Sedimentary Uranium

    Get PDF
    Groundwater uranium (U) concentrations have been measured above the U.S. EPA maximum contaminant level (30 ÎĽg/L) in many U.S. aquifers, including in areas not associated with anthropogenic contamination by milling or mining. In addition to carbonate, nitrate has been correlated to uranium groundwater concentrations in two major U.S. aquifers. However, to date, direct evidence that nitrate mobilizes naturally occurring U from aquifer sediments has not been presented. Here, we demonstrate that the influx of high-nitrate porewater through High Plains alluvial aquifer silt sediments bearing naturally occurring U(IV) can stimulate a nitrate-reducing microbial community capable of catalyzing the oxidation and mobilization of U into the porewater. Microbial reduction of nitrate yielded nitrite, a reactive intermediate, which was further demonstrated to abiotically mobilize U from the reduced alluvial aquifer sediments. These results indicate that microbial activity, specifically nitrate reduction to nitrite, is one mechanism driving U mobilization from aquife

    Complete Genome Sequence of Geobacter sp. Strain FeAm09, a Moderately Acidophilic Soil Bacterium

    Get PDF
    A moderately acidophilic Geobacter sp. strain, FeAm09, was isolated from forest soil. The complete genome sequence is 4,099,068 bp with an average GC content of 61.1%. No plasmids were detected. The genome contains a total of 3,843 genes and 3,608 protein-coding genes, including genes supporting iron and nitrogen biogeochemical cycling

    Life and Liesegang: Outcrop-Scale Microbially Induced Diagenetic Structures and Geochemical Self-Organization Phenomena Produced by Oxidation of Reduced Iron

    Get PDF
    The Kanab Wonderstone is sandstone (Shinarump Member, Chinle Formation) that is cemented and stained with iron oxide. The iron-oxide cementation and staining in these rocks have been considered examples of the Liesegang phenomenon, but we will show that they comprise a microbially induced structure. The spacing of bands of iron-oxide stain follow the Jablczynski spacing law (wherein the spacing between bands of iron-oxide stain increases as one traverses a series of bands) characteristic of Liesegang. Bands of iron-oxide cement exhibit more variable spacing and exhibit a weak but significant correlation between band thickness and distance between bands of cement. The pore-filling cement contains morphotypes that are similar in size and habit to those exhibited by microaerophilic iron-oxidizing bacteria. Other disseminated iron-oxide mineralization occurs as rhombohedra interpreted to be pseudomorphs after siderite. We interpret the cement to be produced by microbially mediated oxidation of siderite (a typical early diagenetic mineral in fluvial sandstones). Iron-oxidizing bacteria colonized the redox interface between siderite-cemented sand and porous sandstone. Microbes oxidized aqueous Fe(II), generating acid that caused siderite dissolution. The iron-oxide cement is the microbial product of a geochemical drive for organization; whereas the iron-oxide stain is true Liesegang. Together, they comprise a distinctive microbially induced structure with high preservation potential. Key Words: Biosignatures—Iron oxides—Diagenesis—Iron-oxidizing bacteria—Shinarump
    corecore