3,260 research outputs found

    Baryon stopping and strange baryon and anti-baryon production at ultrarelativistic energies

    Get PDF
    The amount of proton stopping in central Pb+Pb collisions from 20–160 A GeV as well as hyperon and antihyperon rapidity distributions are calculated within the UrQMD model in comparison to experimental data at 40, 80, and 160 A GeV taken recently from the NA49 collaboration. Furthermore, the amount of baryon stopping at 160A GeV for Pb+Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central collisions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80, and 160 A GeV are underestimated by up to factors of 3—depending on the annihilation cross section employed—which might be addressed to missing multimeson fusion channels in the UrQMD model. Pacs-Nr.: 25.75.2q, 24.10.Jv, 24.10.L

    Baryon stopping and strange baryon/antibaryon production at SPS energies

    Get PDF
    The amount of proton stopping in central Pb+Pb collisions from 20 160 A·GeV as well as hyperon and antihyperon rapidity distributions are calcu- lated within the UrQMD model in comparison to experimental data at 40, 80 and 160 A·GeV taken recently from the NA49 collaboration. Further- more, the amount of baryon stopping at 160 A·GeV for Pb + Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central colli- sions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80 and 160 A·GeV are underestimated by up to factors of 3 - depending on the annihilation cross section employed - which might be addressed to missing multi-meson fusion channels in the UrQMD model. PACS 25.75.+

    Nucleus-nucleus collisions at high baryon densities

    Get PDF
    We study central collision of Pb + Pb at 20, 40, 80 and 160 A·GeV within the UrQMD transport approach and compare rapidity distributions of ,K+,K and with the recent measurements from the NA49 Collaboration at 40, 80 and 160 A·GeV. It is found that the UrQMD model reasonably describes the data, however, systematically overpredicts the yield by < 20%, whereas the K+ yield is underestimated by < 15%. The K yields are in a good agreement with the experimental data, the yields are also in a reasonable correspondence with the data for all energies. We find that hadronic flavour exchange reactions largely distort the information about the initial strangeness production mechanism at all energies considered. PACS: 25.75.+

    Hadronic observables from SIS to SPS energies: anything strange with strangeness?

    Get PDF
    We calculate p, ±,K± and (+ 0) rapidity distributions and compare to experimental data from SIS to SPS energies within the UrQMD and HSD transport approaches that are both based on string, quark, diquark (q, ¯q, qq, ¯q ¯q) and hadronic degrees of freedom. The two transport models do not include any explicit phase transition to a quark-gluon plasma (QGP). It is found that both approaches agree rather well with each other and with the experimental rapidity distributions for protons, s, ± and K±. In- spite of this apparent agreement both transport models fail to reproduce the maximum in the excitation function for the ratio K+/ + found experimen- tally between 11 and 40 A·GeV. A comparison to the various experimental data shows that this failure is dominantly due to an insu cient description of pion rapidity distributions rather than missing strangeness . The modest di erences in the transport model results on the other hand can be attributed to di erent implementations of string formation and frag- mentation, that are not su ciently controlled by experimental data for the elementary reactions in vacuum

    Eine neue Brombeerart aus Spanien

    Get PDF
    Rubus lucensis H. E. WEBER & MONASTERIO-HUELIN (sect. Rubus ser. Pallidi W. C. R. WATSON) wird als neue Art beschrieben und abgebildet. Sie wurde bislang in zwei weit voneinander entfernten Gebieten Nordspaniens (Provinzen Lugo und Logroño) nachgewiesen.Rubus lucensis H. E. WEBER & MONASTERIO-HUELIN (sect. Rubus ser. Pallidi W. C. R. WATSON) is described as a new species and illustrated. Up till now it has been tound at two localities far away trom each other in northern Spain (provinces Lugo and Logroño).Se describe e iconogratia Rubus lucensis H. E. WEBER & MONASTERIO-HUELIn spec. nov. (sec. Rubus ser, PALLIDI W. C. R. WATSON), specie que se distribuye por dos localidades, muy distantes entre si, del norte des Espana (provicias de Lugo y Logroño)

    Exploring isospin, strangeness and charm distillation in heavy ion collisions

    Get PDF
    The isospin and strangeness dimensions of the Equation of State are explored. RIA and the SIS200 accelerator at GSI will allow to explore these regions in compressed baryonic matter. 132 Sn + 132 Sn and 100 Sn + 100 Sn collisions as well as the excitation functions of K/pi, Lambda/pi and the centrality dependence of charmonium suppression from the UrQMD and HSD transport models are presented and compared to data. Unambiguous proof for the creation of a 'novel phase of matter' from strangeness and charm yields is not in sight

    Strangeness dynamics in relativistic nucleus-nucleus collision

    Get PDF
    We investigate hadron production as well as transverse hadron spectra in nucleus-nucleus collisions from 2 A.GeV to 21.3 A.TeV within two independent transport approaches (UrQMD and HSD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data demonstrates that both approaches agree quite well with each other and with the experimental data on hadron production. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the 'kink') is well described by both approaches without involving any phase transition. However, the maximum in the K+/Pi+ ratio at 20 to 30 A.GeV (the 'horn') is missed by ~ 40%. A comparison to the transverse mass spectra from pp and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV, however, the measured K +/- m-theta-spectra have a larger inverse slope parameter than expected from the calculations. The approximately constant slope of K+/-spectra at SPS (the 'step') is not reproduced either. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions

    The robustness of the derived design life levels of heavy precipitation events in the pre-alpine Oberland region of Southern Germany

    Get PDF
    Extreme value analysis (EVA) is well-established to derive hydrometeorological design values for infrastructures that have to withstand extreme events. Since there is concern about increased extremes with higher hazard potential under climate change, alterations of EVA are introduced for which statistical properties are no longer assumed to be constant but vary over time. In this study, both stationary and non-stationary EVA models are used to derive design life levels (DLLs) of daily precipitation in the pre-alpine Oberland region of Southern Germany, an orographically complex region characterized by heavy precipitation events and climate change. As EVA is fraught with uncertainties, it is crucial to quantify its methodological impacts: two theoretical distributions (i.e., Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution), four different parameter estimation techniques (i.e., Maximum Likelihood Estimation (MLE), L-moments, Generalized Maximum Likelihood Estimation (GMLE), and Bayesian estimation method) are evaluated and compared. The study reveals large methodological uncertainties. Discrepancies due to the parameter estimation methods may reach up to 45% of the mean absolute value, while differences between stationary and non-stationary models are of the same magnitude (differences in DLLs up to 40%). For the end of this century in the Oberland region, there is no robust tendency towards increased extremes found

    The Robustness of the Derived Design Life Levels of Heavy Precipitation Events in the Pre-Alpine Oberland Region of Southern Germany

    Get PDF
    Extreme value analysis (EVA) is well-established to derive hydrometeorological design values for infrastructures that have to withstand extreme events. Since there is concern about increased extremes with higher hazard potential under climate change, alterations of EVA are introduced for which statistical properties are no longer assumed to be constant but vary over time. In this study, both stationary and non-stationary EVA models are used to derive design life levels (DLLs) of daily precipitation in the pre-alpine Oberland region of Southern Germany, an orographically complex region characterized by heavy precipitation events and climate change. As EVA is fraught with uncertainties, it is crucial to quantify its methodological impacts: two theoretical distributions (i.e., Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution), four different parameter estimation techniques (i.e., Maximum Likelihood Estimation (MLE), L-moments, Generalized Maximum Likelihood Estimation (GMLE), and Bayesian estimation method) are evaluated and compared. The study reveals large methodological uncertainties. Discrepancies due to the parameter estimation methods may reach up to 45% of the mean absolute value, while differences between stationary and non-stationary models are of the same magnitude (differences in DLLs up to 40%). For the end of this century in the Oberland region, there is no robust tendency towards increased extremes found

    Review of QGP signatures - ideas versus observables

    Get PDF
    We investigate hadron production and transverse hadron spectra in nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD) based on quark, diquark, string and hadronic degrees of freedom. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the ’kink’) is described well by both approaches without involving a phase transition. However, the maximum in the K+ p+ ratio at 20 to 30 A·GeV (the ’horn’) is missed by ~ 40%. Also, at energies above ~5 A·GeV, the measured K± mT-spectra have a larger inverse slope than expected from the models. Thus the pressure generated by hadronic interactions in the transport models at high energies is too low. This finding suggests that the additional pressure - as expected from lattice QCD at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central heavy-ion collisions. Finally, we discuss the emergence of density perturbations in a first-order phase transition and why they might affect relative hadron multiplicities, collective flow, and hadron mean-free paths at decoupling. A minimum in the collective flow v2 excitation function was discovered experimentally at 40 A·GeV - such a behavior has been predicted long ago as signature for a first order phase transition
    • …
    corecore