4 research outputs found

    AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis

    Get PDF
    Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis

    Development of Pyrazolopyrimidine Anti-Wolbachia Agents for the Treatment of Filariasis

    Get PDF
    Anti-Wolbachia therapy has been identified as a viable treatment for combating filarial diseases. Phenotypic screening revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration of the SAR for this chemotype, with improvement of metabolic stability and solubility profiles using medicinal chemistry approaches. Organic synthesis has enabled functionalization of the pyrazolopyrimidine core at multiple positions, generating a library of compounds of which many analogues possess nanomolar activity against Wolbachia in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics (PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional oral PK profiles in mice puts this lead compound in a strong position for in vivo proof-of-concept pharmacodynamics studies and demonstrates the strong potential for further optimization and development of this series for treatment of filariasis in the future
    corecore