367 research outputs found
Neotropical Bird Migration During The Ice Ages: Orientation And Ecology
Reconstruction of breeding habitat of North American Neotropical migrants 18,000 years ago and 9,000 years ago indicated major shifts in both location and composition of plant communities relative to present conditions. Increased vegetation in xeric areas may have compensated, at least in part, for the reduction in breeding habitat due to glaciation. Autumnal flights of Neotropical passerine migrants flying on constant headings from North America to Central and South America were simulated under present wind conditions and for winds during periods of glaciation at 18,000 and 9,000 years ago. The 155 degrees average headings currently observed for Atlantic migrants were found to function well during periods of glaciation and may have been more generally useful during those times than at present
Recommended from our members
Sensitivity of Climate Models: Comparison of Simulated and Observed Patterns for Past Climates
Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. As one index of the magnitude of past climates change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide doubling. Simulating the climate changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the NCAR CCMO (National Center for Atmospheric Research, Community Climate Model, Version 0), after changing its boundary conditions to those appropriate for past climates. We have assembled near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our comparisons have shown both some of the strengths and weaknesses of the model. The research so far has shown the feasibility of our methods for comparing paleoclimatic data and model results. Our research has also shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1991, we have continued our studies and this Progress Report documents the results to date. During this year, we have completed new modeling experiments, compiled new data sets, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling. 37 refs
Double Diffraction Dissociation at the Fermilab Tevatron Collider
We present results from a measurement of double diffraction dissociation in
collisions at the Fermilab Tevatron collider. The production cross
section for events with a central pseudorapidity gap of width
(overlapping ) is found to be [] at [630]
GeV. Our results are compared with previous measurements and with predictions
based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review
Letter
Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury
ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.IMPORTANCESevere acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
The Majorana Neutrinoless Double-Beta Decay Experiment
The proposed Majorana double-beta decay experiment is based on an array of
segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically
enriched to 86% in 76Ge. A discussion is given of background reduction by:
material selection, detector segmentation, pulse shape analysis, and
electro-formation of copper parts and granularity. Predictions of the
experimental sensitivity are given. For an experimental running time of 10
years over the construction and operation of Majorana, a half-life sensitivity
of ~4x10^27 y (neutrinoless) is predicted. This corresponds to an effective
Majorana mass of the electron neutrino of ~0.03-0.04 eV, according to recent
QRPA and RQRPA matrix element calculations.Comment: 10 pages, 7 figure
Improving Salmonella vector with rec mutation to stabilize the DNA cargoes
<p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in <it>E. coli </it>by mutating several genes including the <it>recA</it>, <it>recE</it>, <it>recF </it>and <it>recJ</it>. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in <it>Salmonella enterica</it>.</p> <p>Results</p> <p>The effect of <it>recA</it>, <it>recF </it>and <it>recJ </it>deletions on DNA recombination was examined in three serotypes of <it>Salmonella enterica</it>. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a Δ<it>recA </it>or Δ<it>recF </it>mutation; (2) in all three <it>Salmonella </it>serotypes, both Δ<it>recA </it>and Δ<it>recF </it>mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) Δ<it>recA </it>and Δ<it>recF </it>mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a Δ<it>recJ </it>mutation could reduce plasmid recombination but was less effective than Δ<it>recA </it>and Δ<it>recF </it>mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec<sup>+ </sup>strains. A Δ<it>recA </it>mutation reduced both intrachromosomal recombination and plasmid integration frequencies.</p> <p>Conclusions</p> <p>The Δ<it>recA </it>and Δ<it>recF </it>mutations can reduce plasmid recombination frequencies in <it>Salmonella enterica</it>, but the effect can vary between serovars. This information will be useful for developing <it>Salmonella </it>delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.</p
- …