209 research outputs found

    Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters

    Full text link
    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter -- present in the core of NSs -- is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, Rns, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (Mns > 0.5 Msun). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single Rns value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov-Chain Monte-Carlo approach, we produce the marginalized posterior distribution for Rns, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions,we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, Rns=9.1(+1.3)(-1.5) km (90%-confidence). Such a value is consistent with low-res equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.Comment: Accepted to Apj. 31 pages, 17 figures, 8 table

    A search for hyperluminous X-ray sources in the XMM-Newton source catalog

    Full text link
    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 1041<LX<1044 erg s−110^{41} < L_{\rm X} < 10^{44}\,{\rm erg\,s}^{-1}, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243−-49 HLX−-1 and M82 X−-1. From a statistical study, we conservatively estimate that up to 71±1171 \pm 11 of these sources may be fore- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available datasets, in particular the VLA FIRST in radio, UKIDSS in the near-infrared, GALEX in the ultra-violet and CFHT Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g. active galactic nuclei, BL Lac objects, Galactic X-ray binaries or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.Comment: 20 pages, 6 figures, accepted to Ap

    The Magellanic system X-ray sources

    Full text link
    Using archival X-ray data from the second XMM-Newton serendipitous source catalogue, we present comparative analysis of the overall population of X-ray sources in the Large and Small Magellanic Clouds. We see a difference between the characteristics of the brighter sources in the two populations in the X-ray band. Utilising flux measurements in different energy bands we are able to sort the X-ray sources based on similarities to other previously identified and classified objects. In this manner we are able to identify the probable nature of some of the unknown objects, identifying a number of possible X-ray binaries and Super Soft Sources.Comment: 4 pages, 2 figures. Poster to appear in proceedings of IAU Symposium 256, The Magellanic System: Stars, Gas, and Galaxies. Keele Univeristy, U

    Discovery of a quiescent neutron star binary in the globular cluster M13

    Full text link
    We have discovered with XMM-Newton an X-ray source in the core of the globular cluster M13, whose X-ray spectral properties suggest that it is a quiescent neutron star X-ray binary. The spectrum can be well fitted with a pure hydrogen atmosphere model, with T=76 +/- 3 eV, R=12.8 +/- 0.4 km and an X-ray luminosity of 7.3 +/- 0.6 x 10^{32} erg/s. In the light of this result, we have discovered a strong correlation between the stellar encounter rate and the number of quiescent neutron stars found in the ten globular clusters observed so far by either XMM-Newton or Chandra. This result lends strong support to the idea that these systems are primarily produced by stellar encounters in the core of globular clusters.Comment: 4 pages, 2 B&W figures and 1 color figure. Accepted for publication in A&A Letters. Revised reference list and minor correction

    Constraining the equation of state of supra-nuclear dense matter from XMM-Newton observations of neutron stars in globular clusters

    Full text link
    We report on the detailed modelling of the X-ray spectra of three likely neutron stars. The neutron stars, observed with XMM-Newton are found in three quiescent X-ray binaries in the globular clusters: omega Cen, M 13 and NGC 2808. Whether they are accreting at very low rates or radiating energy from an accretion heated core, their X-ray spectra are expected to be those of a hydrogen atmosphere. We use and compare publicly available hydrogen atmosphere models, with constant and varying surface gravities to constrain the masses and radii of the neutron stars. Thanks to the high XMM-Newton throughput, and the accurate distances available for these clusters, using the latest science analysis software release and calibration of the XMM-Newton EPIC cameras, we derive the most stringent constraints on the masses and radii of the neutron stars obtained to date from these systems. A comparison of the models indicate that previously used hydrogen atmosphere models (assuming constant surface gravity) tend to underestimate the mass and overestimate the radius of neutron stars. Our data constrain the allowed equations of state to those which concern normal nucleonic matter and one possible strange quark matter model, thus constraining radii to be from 8 km and masses up to 2.4 M⊙_\odot.Comment: 10 pages, 8 figures, accepted to be published in The Astrophysical Journa

    An Ultrasoft X-ray Flare from 3XMM J152130.7+074916: a Tidal Disruption Event Candidate

    Full text link
    We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074916.5 (z=0.17901 and d_L=866 Mpc). The high-quality X-ray spectrum can be fitted with a thermal disk with an apparent inner disk temperature of 0.17 keV and a rest-frame 0.24-11.8 keV unabsorbed luminosity of ~5e43 erg/s, subject to a fast-moving warm absorber. Short-term variability was also clearly observed, with the spectrum being softer at lower flux. The source was covered but not detected in a Chandra observation on 2000 April 3, a Swift observation on 2005 September 10, and a second XMM-Newton observation on 2014 January 19, implying a large variability (>260) of the X-ray flux. The optical spectrum of the candidate host galaxy, taken ~11 yrs after the XMM-Newton detection, shows no sign of nuclear activity. This, combined with its transient and ultrasoft properties, leads us to explain the source as tidal disruption of a star by the supermassive black hole in the galactic center. We attribute the fast-moving warm absorber detected in the first XMM-Newton observation to the super-Eddington outflow associated with the event and the short-term variability to a disk instability that caused fast change of the inner disk radius at a constant mass accretion rate.Comment: 9 pages, 5 figures. ApJ, in pres
    • …
    corecore