8,064 research outputs found

    Isospectral Graph Reductions and Improved Estimates of Matrices' Spectra

    Get PDF
    Via the process of isospectral graph reduction the adjacency matrix of a graph can be reduced to a smaller matrix while its spectrum is preserved up to some known set. It is then possible to estimate the spectrum of the original matrix by considering Gershgorin-type estimates associated with the reduced matrix. The main result of this paper is that eigenvalue estimates associated with Gershgorin, Brauer, Brualdi, and Varga improve as the matrix size is reduced. Moreover, given that such estimates improve with each successive reduction, it is also possible to estimate the eigenvalues of a matrix with increasing accuracy by repeated use of this process.Comment: 32 page

    Restrictions and Stability of Time-Delayed Dynamical Networks

    Full text link
    This paper deals with the global stability of time-delayed dynamical networks. We show that for a time-delayed dynamical network with non-distributed delays the network and the corresponding non-delayed network are both either globally stable or unstable. We demonstrate that this may not be the case if the network's delays are distributed. The main tool in our analysis is a new procedure of dynamical network restrictions. This procedure is useful in that it allows for improved estimates of a dynamical network's global stability. Moreover, it is a computationally simpler and much more effective means of analyzing the stability of dynamical networks than the procedure of isospectral network expansions introduced in [Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks. Nonlinearity, 25 (2012) 211-254]. The effectiveness of our approach is illustrated by applications to various classes of Cohen-Grossberg neural networks.Comment: 32 pages, 9 figure

    Spatial field correlation, the building block of mesoscopic fluctuations

    Full text link
    The absence of self averaging in mesoscopic systems is a consequence of long-range intensity correlation. Microwave measurements suggest and diagrammatic calculations confirm that the correlation function of the normalized intensity with displacement of the source and detector, ΔR\Delta R and Δr\Delta r, respectively, can be expressed as the sum of three terms, with distinctive spatial dependences. Each term involves only the sum or the product of the square of the field correlation function, FFE2F \equiv F_{E}^2. The leading-order term is the product, the next term is proportional to the sum. The third term is proportional to [F(ΔR)F(Δr)+[F(ΔR)+F(Δr)]+1][F(\Delta R)F(\Delta r) + [F(\Delta R)+F(\Delta r)] + 1].Comment: Submitted to PR

    Electron dephasing near zero temperature: an experimental review

    Full text link
    The behavior of the electron dephasing time near zero temperature, τϕ0\tau_\phi^0, has recently attracted vigorous attention. This renewed interest is primarily concerned with whether τϕ0\tau_\phi^0 should reach a finite or an infinite value as TT \to 0. While it is accepted that τϕ0\tau_\phi^0 should diverge if there exists only electron-electron (electron-phonon) scattering, several recent measurements have found that τϕ0\tau_\phi^0 depends only very weakly on temperature, if at all, when TT is sufficiently low. This article discusses the current experimental status of "the saturation problem", and concludes that the origin(s) for this widely observed saturation are still unresolved

    Field and intensity correlations in random media

    Full text link
    Measurements of the microwave field transmitted through a random medium allows direct access to the field correlation function, whose complex square is the short range or C1 contribution to the intensity correlation function C. The frequency and spatial correlation function are compared to their Fourier pairs, the time of flight distribution and the specific intensity, respectively. The longer range contribution to intensity correlation is obtained directly by subtracting C1 from C and is in good agreement with theory.Comment: 9 pages, 5 figures, submitted to Phys.Rev.

    Optical Monitoring of PKS 1510-089: A Binary Black Hole System?

    Full text link
    Three deep flux minima were observed with nearly the same time-scales and intervals for the blazar PKS 1510-089 in the past few years. A binary black hole system was proposed to be at the nucleus of this object, and a new minimum was predicted to occur in 2002 March. We monitored this source with a 60/90 cm Schmidt telescope from 2002 February to April. In combination with the data obtained by Xie et al. (2004) in the same period, we presented for the 2002 minimum a nearly symmetric light curve, which would be required by an eclipsing model of a binary black hole system. We also constrained the time-scale of the minimum to be 35 min, which is more consistent with the time-scales ~42 min of the three previous minima than the 89 min time-scale given by the same authors. The wiggling miniarcsecond radio jet observed in this object is taken as a further evidence for the binary black hole system. The `coupling' of the periodicity in light curve and the helicity in radio jet is discussed in the framework of a binary black hole system.Comment: 5 pages, 4 figures, accepted by MNRA

    Non-Fermi liquid behavior of SrRuO_3 -- evidence from infrared conductivity

    Full text link
    The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to \omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.Comment: 4 pages, 3 postscript figure
    corecore