1,739 research outputs found

    Visible-light driven water splitting over BiFeO₃ photoanodes grown via the LPCVD reaction of [Bi(OtBu)₃] and [Fe(OtBu)₃]₂ and enhanced with a surface nickel oxygen evolution catalyst

    Get PDF
    Phase-pure BiFeO3 films were grown directly via dual-source low-pressure CVD (LPCVD) from the ligand-matched precursors [Bi(O(t)Bu)3] and [Fe(O(t)Bu)3]2, without the requirement for oxidising gas or post deposition annealing. Photocatalytic testing for water oxidation revealed extremely high activity for PEC water splitting and photocatalytic water oxidation under visible light irradiation (λ > 420 nm) with a benchmark IPCE for BiFeO3 of 23% at 400 nm. The high activity is ascribed to the ultrafine morphology achieved via the LPCVD process. The performance was enhanced by over four times when the BiFeO3 photoanode is coupled to a Ni-B surface OEC

    Defect-mediated lattice relaxation and domain stability in ferroelectric oxides.

    Get PDF
    The effects of the lattice strain induced by neutral oxygen vacancies in ferroelectric tetragonal BaTiO(3) and KNbO(3) are investigated using ab initio simulations. We propose that an oxygen vacancy can transform from its metastable equatorial configuration to the stable axial configuration via either diffusion or rotation of the polar axis near the vacancy site by 90°. The latter mechanism, predicted to dominate in materials with slow oxygen vacancy diffusion and low formation energy of 90° domain walls, can stimulate the formation of domains with their polar axes pinned by the vacancies

    ZnO nanorod surface modification with PDDA/PSS Bi-layer assembly for performance improvement of ZnO piezoelectric energy harvesting devices

    Get PDF
    ZnO nanostructure based energy harvesting devices (ZnO nanogenerator) were fabricated using ZnO nanorods with the surface modified using a polyelectrolyte assembly comprising bi-layers of Polydiallyldimethylammonium chloride and Polystyrene sulfonate. The peak open-circuit voltage device characteristics and power delivered across a load increased in relation to the number of bi-layers in the polyelectrolyte deposition. At the highest loading of polyelectrolyte the energy harvesters generated a peak power density of 426 µW cm−2 and 1 V peak open-circuit voltage at a peak tip acceleration of 50 g. This compares to 35 µW cm−2 without polyelectrolyte. We relate this significant enhancement in device performance to the screening of mobile carriers due to an interaction of the polar polyelectrolyte materials with the surface of the ZnO nanostructures. It is proposed that the adsorption of the polyelectrolyte on the ZnO interacts with the surface defects and reduces the rate of screening and trapping of carriers leading to increased performance

    Protocol for the 'e-Nudge trial' : a randomised controlled trial of electronic feedback to reduce the cardiovascular risk of individuals in general practice [ISRCTN64828380]

    Get PDF
    Background: Cardiovascular disease (including coronary heart disease and stroke) is a major cause of death and disability in the United Kingdom, and is to a large extent preventable, by lifestyle modification and drug therapy. The recent standardisation of electronic codes for cardiovascular risk variables through the United Kingdom's new General Practice contract provides an opportunity for the application of risk algorithms to identify high risk individuals. This randomised controlled trial will test the benefits of an automated system of alert messages and practice searches to identify those at highest risk of cardiovascular disease in primary care databases. Design: Patients over 50 years old in practice databases will be randomised to the intervention group that will receive the alert messages and searches, and a control group who will continue to receive usual care. In addition to those at high estimated risk, potentially high risk patients will be identified who have insufficient data to allow a risk estimate to be made. Further groups identified will be those with possible undiagnosed diabetes, based either on elevated past recorded blood glucose measurements, or an absence of recent blood glucose measurement in those with established cardiovascular disease. Outcome measures: The intervention will be applied for two years, and outcome data will be collected for a further year. The primary outcome measure will be the annual rate of cardiovascular events in the intervention and control arms of the study. Secondary measures include the proportion of patients at high estimated cardiovascular risk, the proportion of patients with missing data for a risk estimate, and the proportion with undefined diabetes status at the end of the trial

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Cloning of somatolactin alpha, beta forms and the somatolactin receptor in Atlantic salmon: Seasonal expression profile in pituitary and ovary of maturing female broodstock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatolactin (Sl) is a fish specific adenohypophyseal peptide hormone related to growth hormone (Gh). Some species, including salmonids, possess two forms: Sl alpha and Sl beta. The somatolactin receptor (slr) is closely related to the growth hormone receptor (ghr). Sl has been ascribed many physiological functions, including a role in sexual maturation. In order to clarify the role of Sl in the sexual maturation of female Atlantic salmon (Salmo salar), the full length cDNAs of slr, Sl alpha and Sl beta were cloned and their expression was studied throughout a seasonal reproductive cycle using real-time quantitative PCR (RTqPCR).</p> <p>Methods</p> <p>Atlantic salmon Sl alpha, Sl beta and slr cDNAs were cloned using a PCR approach. Gene expression of Sl alpha, SL beta and slr was studied using RTqPCR over a 17 month period encompassing pre-vitellogenesis, vitellogenesis, ovulation and post ovulation in salmon females. Histological examination of ovarian samples allowed for the classification according to the degree of follicle maturation into oil drop, primary, secondary or tertiary yolk stage.</p> <p>Results</p> <p>The mature peptide sequences of Sl alpha, Sl beta and slr are highly similar to previously cloned salmonid forms and contained the typical motifs. Phylogenetic analysis of Atlantic salmon Sl alpha and Sl beta shows that these peptides group into the two Sl clades present in some fish species. The Atlantic salmon slr grouped with salmonid slr amongst so-called type I ghr. An increase in pituitary Sl alpha and Sl beta transcripts before and during spawning, with a decrease post-ovulation, and a constant expression level of ovarian slr were observed. There was also a transient increase in Sl alpha and Sl beta in May prior to transfer from seawater to fresh water and ensuing fasting.</p> <p>Conclusion</p> <p>The up-regulation of Sl alpha and Sl beta during vitellogenesis and spawning, with a subsequent decrease post-ovulation, supports a role for Sl during gonadal growth and spawning. Sl could also be involved in calcium/phosphate mobilization associated with vitellogenesis or have a role in energy homeostasis associated with lipolysis during fasting. The up-regulation of both Sl alpha and Sl beta prior to fasting and freshwater transfer, suggests a role for Sl linked to reproduction that may be independent of the maturation induced fasting.</p
    corecore