15,393 research outputs found
Lightweight engine containment
Kevlar fabric styles and weaves were studied, as well as methods of application for advanced gas turbine engines. The Kevlar material was subjected to high speed impacts by simple projectiles fired from a rifle, as well as more complex shapes such as fan blades released from gas turbine rotors in a spin pit. Just contained data was developed for a variety of weave and/or application techniques, and a comparative containment weight efficiency was established for Kevlar containment applications. The data generated during these tests is being incorporated into an analytical design system so that blade containment trade-off studies between Kevlar and metal case engine structures can be made. Laboratory tests and engine environment tests were performed to determine the survivability of Kevlar in a gas turbine environment
X-ray Evidence for Multiple Absorbing Structures in Seyfert Galaxies
We have used X-ray spectra to measure attenuating columns in a large sample
of Seyfert galaxies. Over 30 of these sources have resolved radio jets,
allowing the relative orientation of the nucleus and host galaxy to be
constrained. We have discovered that the distribution of absorbing columns is
strongly correlated with the relative orientation of the Seyfert structures.
This result is inconsistent with unification models including only a torus and
is instead most readily explained if a second absorber is included: in addition
to a Compton-thick, parsec-scale torus there would also be a larger-scale
absorber with N_H < 10^{23} cm^{-2}. The second absorber is aligned with the
host galactic plane while the torus is arbitrarily misaligned.Comment: 2 pages, 1 figure, to appear in "Multiwavelength AGN Surveys"
(Cozumel, December 8-12 2003), ed. R. Maiolino and R. Mujica, Singapore:
World Scientific, 2004. Additional material may be found at
http://space.mit.edu/home/jonathan/research.htm
Joint Density-Functional Theory of the Electrode-Electrolyte Interface: Application to Fixed Electrode Potentials, Interfacial Capacitances, and Potentials of Zero Charge
This work explores the use of joint density-functional theory, a new form of
density-functional theory for the ab initio description of electronic systems
in thermodynamic equilibrium with a liquid environment, to describe
electrochemical systems. After reviewing the physics of the underlying
fundamental electrochemical concepts, we identify the mapping between commonly
measured electrochemical observables and microscopically computable quantities
within an, in principle, exact theoretical framework. We then introduce a
simple, computationally efficient approximate functional which we find to be
quite successful in capturing a priori basic electrochemical phenomena,
including the capacitive Stern and diffusive Gouy-Chapman regions in the
electrochemical double layer, quantitative values for interfacial capacitance,
and electrochemical potentials of zero charge for a series of metals. We
explore surface charging with applied potential and are able to place our ab
initio results directly on the scale associated with the Standard Hydrogen
Electrode (SHE). Finally, we provide explicit details for implementation within
standard density-functional theory software packages at negligible
computational cost over standard calculations carried out within vacuum
environments.Comment: 18 pages, 5 figures. Initially presented at APS March Meeting 2010.
Accepted for publication in Physical Review B on Jul. 27, 201
Limit on the CH4/CO ratio in Comet Levy (1990c) and comparisons with other comets
Near-infrared observations of comet Levy (1900c) were made on UT 4.3 and 5.3 Sep. 1990 from the United Kingdom Infrared Telescope on Mauna Kea. A scanning Fabry-Perot interferometer in combination with a cooled grating spectrometer was used to make a sensitive search for fluorescent emission from the v zub 3 band of CH4 near lambda approx. 3.3 microns. If CH4 is a parent molecule released directly from the nucleus, then the 3 sigma limit on its abundance is CH4/H2O approx. less than 0.0031, assuming that the kinetic temperature of the inner coma is approx. 50 K and that the CH4 spin species are equilibrated at a temperature approx. greater than 50 K. Since International Ultraviolet Explorer (IUE) observations of CO in Levy indicate that CO/H2O approx. 0.04 (Feldman et al.), researchers find that CH4/CO approx. less than 0.1. Infrared spectroscopic searches for CH4 in Comet Halley also yielded no positive detections; the more sensitive upper limit from the latter observations is CH4/H2O approx. less than 0.002. Since CO/H2O approx. 0.05 in Halley (not including the extended source of CO), the upper limits on the CH4/CO ratios are almost identical for comets Levy and Halley. A marginal infrared detection of the CH4 v sub 3 band in comet Wilson yielded CH4/H2O approx. 0.01 to 0.05 (Larson et al.), but there was no positive detection of CO. If the identification of the feature in the infrared spectrum of comet Wilson is correct, then that would indicate a very high CH4/CO ratio in this comet
Scattering fidelity in elastodynamics
The recent introduction of the concept of scattering fidelity, causes us to
revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302
(2003)]. There, the ``distortion'' of the coda of an acoustic signal is
measured under temperature changes. This quantity is in fact the negative
logarithm of scattering fidelity. We re-analyse their experimental data for two
samples, and we find good agreement with random matrix predictions for the
standard fidelity. Usually, one may expect such an agreement for chaotic
systems only. While the first sample, may indeed be assumed chaotic, for the
second sample, a perfect cuboid, such an agreement is more surprising. For the
first sample, the random matrix analysis yields a perturbation strength
compatible with semiclassical predictions. For the cuboid the measured
perturbation strength is much larger than expected, but with the fitted values
for this strength, the experimental data are well reproduced.Comment: 4 page
A computationally efficacious free-energy functional for studies of inhomogeneous liquid water
We present an accurate equation of state for water based on a simple
microscopic Hamiltonian, with only four parameters that are well-constrained by
bulk experimental data. With one additional parameter for the range of
interaction, this model yields a computationally efficient free-energy
functional for inhomogeneous water which captures short-ranged correlations,
cavitation energies and, with suitable long-range corrections, the non-linear
dielectric response of water, making it an excellent candidate for studies of
mesoscale water and for use in ab initio solvation methods.Comment: 6 pages, 5 figure
- …