1,140 research outputs found
Ultra--cold gases and the detection of the Earth's rotation: Bogoliubov space and gravitomagnetism
The present work analyzes the consequences of the gravitomagnetic effect of
the Earth upon a bosonic gas in which the corresponding atoms have a
non--vanishing orbital angular momentum. Concerning the ground state of the
Bogoliubov space of this system we deduce the consequences, on the pressure and
on the speed of sound, of the gravitomagnetic effect. We prove that the effect
on a single atom is very small, but we also show that for some thermodynamical
properties the consequences scale as a non--trivial function of the number of
particles.Comment: 4 page
Theoretical study of nuclear spin polarization and depolarization in self-assembled quantum dots
We investigate how the strain-induced nuclear quadrupole interaction
influences the degree of nuclear spin polarization in self-assembled quantum
dots. Our calculation shows that the achievable nuclear spin polarization in
In_{x}Ga_{1-x}As quantum dots is related to the concentration of indium and the
resulting strain distribution in the dots. The interplay between the nuclear
quadrupole interaction and Zeeman splitting leads to interesting features in
the magnetic field dependence of the nuclear spin polarization. Our results are
in qualitative agreement with measured nuclear spin polarization by various
experimental groups.Comment: 14 pages, 13 figures, submitted to Physical Review
Elastic properties of graphene flakes: boundary effects and lattice vibrations
We present a calculation of the free energy, the surface free energy and the
elastic constants ("Lam'e parameters" i.e, Poisson ratio, Young's modulus) of
graphene flakes on the level of the density functional theory employing
different standard functionals. We observe that the Lam'e parameters in small
flakes can differ from the bulk values by 30% for hydrogenated zig-zag edges.
The change results from the edge of the flake that compresses the interior.
When including the vibrational zero point motion, we detect a decrease in the
bending rigidity by ~26%. This correction is depending on the flake size, N,
because the vibrational frequencies flow with growing N due to the release of
the edge induced compression. We calculate Grueneisen parameters and find good
agreement with previous authors.Comment: 11 pages, 12 figure
Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment
We report the observation of magnetic and resistive aging in a self assembled
nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays
are characterized by an initial slow decay followed by a more rapid decay in
both the magnetization and resistance. The decays are large accounting for
almost 70% of the magnetization and almost 40% of the resistance for samples
deposited at 35 . For samples deposited at 50 the magnetization
decay accounts for of the magnetization and 50% of the resistance.
During the more rapid part of the decay, the concavity of the slope of the
decay changes sign and this inflection point can be used to provide a
characteristic time. The characteristic time is strongly and systematically
temperature dependent, ranging from x at 400K to x at 320K in samples deposited at . Samples deposited at 50
displayed a 7-8 fold increase in the characteristic time (compared to the samples) for a given aging temperature, indicating that this timescale may
be tunable. Both the temperature scale and time scales are in potentially
useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the
Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into
each other in an anisotropic fashion forming elongated Co nanowires. This aging
behavior occurs within a confined environment of the enveloping Sb layers. The
relationship between the characteristic time and aging temperature fits an
Arrhenius law indicating activated dynamics
A new capacitive sensor for displacement measurement in a surface force apparatus
We present a new capacitive sensor for displacement measurement in a Surface
Forces Apparatus (SFA) which allows dynamical measurements in the range of
0-100 Hz. This sensor measures the relative displacement between two
macroscopic opaque surfaces over periods of time ranging from milliseconds to
in principle an indefinite period, at a very low price and down to atomic
resolution. It consists of a plane capacitor, a high frequency oscillator, and
a high sensitivity frequency to voltage conversion. We use this sensor to study
the nanorheological properties of dodecane confined between glass surfaces.Comment: 7 pages, 8 figure
Nano granular metallic Fe - oxygen deficient TiO composite films: A room temperature, highly carrier polarized magnetic semiconductor
Nano granular metallic iron (Fe) and titanium dioxide (TiO) were
co-deposited on (100) lanthanum aluminate (LaAlO) substrates in a low
oxygen chamber pressure using a pulsed laser ablation deposition (PLD)
technique. The co-deposition of Fe and TiO resulted in 10 nm
metallic Fe spherical grains suspended within a TiO matrix. The
films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss
at room temperature. Our estimate of the saturation magnetization based on the
size and distribution of the Fe spheres agreed well with the measured value.
The film composite structure was characterized as p-type magnetic semiconductor
at 300 K with a carrier density of the order of . The
hole carriers were excited at the interface between the nano granular Fe and
TiO matrix similar to holes excited in the metal/n-type
semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS)
devices. From the large anomalous Hall effect directly observed in these films
it follows that the holes at the interface were strongly spin polarized.
Structure and magneto transport properties suggested that these PLD films have
potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure
Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations
We used molecular dynamics simulations based on a potential model in analogy
to the Tight Binding scheme in the Second Moment Approximation to simulate the
effects of aluminum icosahedral grains (dispersoids) on the structure and the
mechanical properties of an aluminum matrix. First we validated our model by
calculating several thermodynamic properties referring to the bulk Al case and
we found good agreement with available experimental and theoretical data.
Afterwards, we simulated Al systems containing Al clusters of various sizes. We
found that the structure of the Al matrix is affected by the presence of the
dispersoids resulting in well ordered domains of different symmetries that were
identified using suitable Voronoi analysis. In addition, we found that the
increase of the grain size has negative effect on the mechanical properties of
the nanocomposite as manifested by the lowering of the calculated bulk moduli.
The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte
Quasiparticle scattering time in superconducting films: from dirty to clean limit
We study the quasiparticle energy relaxation processes in superconducting Nb
films of different thicknesses corresponding to different electron mean free
paths in a state far from equilibrium, that is the highly dissipative flux-flow
state driven up to the instability point. From the measured current-voltage
curves we derive the vortex critical velocity for several temperatures.
From the values, the quasiparticle energy relaxation time
is evaluated within the Larkin-Ovchinnikov model and
numerical calculations of the quasiparticle energy relaxation rates are carried
out to support the experimental findings. Besides the expected constant
behavior of for the dirty samples, we observe a strong
temperature dependence of the quasiparticle energy relaxation time in the clean
samples. This feature is associated with the increasing contribution from the
electron-phonon scattering process as the dirty limit is approached from the
clean regime
Stability and electronic structure of the complex KPtCl structure-type hydrides
The stability and bonding of the ternary complex KPtCl structure
hydrides is discussed using first principles density functional calculations.
The cohesion is dominated by ionic contributions, but ligand field effects are
important, and are responsible for the 18-electron rule. Similarities to oxides
are discussed in terms of the electronic structure. However, phonon
calculations for SrRuH also show differences, particularly in the
polarizability of the RuH octahedra. Nevertheless, the yet to be made
compounds PbRuH and BeFeH are possible ferroelectrics. The
electronic structure and magnetic properties of the decomposition product,
FeBe are reported. Implications of the results for H storage are discussed
Surface Plasmon Enhanced Photoconductance of Gold Nanoparticle Arrays with Incorporated Alkane Linkers
We report on a photoconductive gain effect in two-dimensional arrays of gold
nanoparticles, in which alkane molecules are inserted. The nanoparticle arrays
are formed by a self-assembly process from alkanethiol-coated gold
nanoparticles, and subsequently they are patterned on a Si/SiO2 chip by a
microcontact printing technique. We find that the photoconductance of the
arrays is strongly enhanced at the frequency of the surface plasmon of the
nanoparticles. We interpret the observation as a bolometric enhancement of the
conductance of the nanoparticle arrays upon excitation of the surface plasmon
resonance
- …