31 research outputs found

    Simulation of free surface and molten metal behavior during induction melting of an aluminium alloy

    No full text
    International audienceElectromagnetic forces are widely used for processing metal alloys in particular in the aluminium casting industry. Induction is used in melting technologies (both crucible and channel induction furnaces). Magnetic stirrers are also used in melting or casting furnaces. However these technologies applied to opaque melts require modelling to be done to understand the resultant impact on the fluid and improve the process control. This is especially the case of crucible induction furnaces. A 2D axially symmetric numerical model describing the coupled magnetohydrodynamic and free surface phenomena taking place in an induction metal bath has been developed. The model uses the Ansys Fluent software, supplemented with additional User Defined Functions for the calculation of the Lorentz forces acting on the metal. The calculation of the shape of the free surface is based on the Volume Of Fluid method and a RANS k-ω Shear Stress Transport (SST) approach is used to describe the turbulent stirring of the metal. An original feature of our model is the consideration of an oxide skin covering the metal free surface. It was considered that the oxide film behaves similarly to a deforming wall and that friction effects between the oxide film and the metal result in the development of a shear stress at the top surface of the melt. Two examples of application of model are reported, for lab scale and industrial scale induction furnaces. The lab scale results are compared with measurements of the free surface shape obtained using a fringe projection technique

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    The violation of the Hund's rule in semiconductor artificial atoms

    Full text link
    The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-component in spin states. We have verified the validity of the energy shell structure as well as the Hund's rule state population at zero magnetic field. Above given fields, we have observed a violation of the Hund's rule by the suppression of triplets and quartets states at the 1p energy shell, taken as an example. We also compare our present results with those obtained using the LS-coupling scheme for low electronic occupations. We have focused our attention to ground-state properties for GaAs quantum dots populated up to forty electrons.Comment: 5 pages, 2 figures, submitted to Semic. Sci. Techno

    Long-term evolution of orbits about a precessing oblate planet. 3. A semianalytical and a purely numerical approach

    Get PDF
    Construction of a theory of orbits about a precessing oblate planet, in terms of osculating elements defined in a frame of the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2005, 2006). We now combine that analytical machinery with numerics. The resulting semianalytical theory is then applied to Deimos over long time scales. In parallel, we carry out a purely numerical integration in an inertial Cartesian frame. The results agree to within a small margin, for over 10 Myr, demonstrating the applicability of our semianalytical model over long timescales. This will enable us to employ it at the further steps of the project, enriching the model with the tides, the pull of the Sun, and the planet's triaxiality. Another goal of our work was to check if the equinoctial precession predicted for a rigid Mars could have been sufficient to repel the orbits away from the equator. We show that for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to +/- 10 deg in magnitude. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos

    World radiocommunication conference 12 : implications for the spectrum eco-system

    Get PDF
    Spectrum allocation is once more a key issue facing the global telecommunications industry. Largely overlooked in current debates, however, is the World Radiocommunication Conference (WRC). Decisions taken by WRC shape the future roadmap of the telecommunications industry, not least because it has the ability to shape the global spectrum allocation framework. In the debates of WRC-12 it is possible to identify three main issues: enhancement of the international spectrum regulatory framework, regulatory measures required to introduce Cognitive Radio Systems (CRS) technologies; and, additional spectrum allocation to mobile service. WRC-12 eventually decided not to change the current international radio regulations with regard to the first two issues and agreed to the third issue. The main implications of WRC-12 on the spectrum ecosystem are that most of actors are not in support of the concept of spectrum flexibility associated with trading and that the concept of spectrum open access is not under consideration. This is explained by the observation that spectrum trading and spectrum commons weaken state control over spectrum and challenge the main principles and norms of the international spectrum management regime. In addition, the mobile allocation issue has shown the lack of conformity with the main rules of the regime: regional spectrum allocation in the International Telecommunication Union (ITU) three regions, and the resistance to the slow decision making procedures. In conclusion, while the rules and decision-making procedures of the international spectrum management regime were challenged in the WRC-12, the main principles and norms are still accepted by the majority of countries

    An SME's Perspective on Implementing the Superior Energy Performance Program

    No full text
    The CCP Houston plant participating in the Texas pilot project is a synthetic resin manufacturing plant and has approximately 50 employees. As a participant in the Superior Energy Performance program, CCP tested the process heating system and steam system assessment standards and is implementing a Management System for Energy that meets the MSE 20000:2008 standard. Pierre will describe the results of the assessments, project implementation and management system implementation

    Statistical properties of spectra of chloronaphthalenes

    No full text

    Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots

    No full text
    International audienceThe grain structure formation in direct chill (DC) casting is directly linked to nucleation, which is generally promoted by inoculation. Inoculation prevents defects, but also modifies the physical properties by changing the microstructure. We studied the coupling of the nucleation on inoculant particles and the grain growth in the presence of melt flow induced by thermosolutal convection and of the transport of free- floating equiaxed grains. We used a volume-averaged two-phase multiscale model with a fully coupled description of phenomena on the grain scale (nucleation on grain refiner particles and grain growth) and on the product scale (macroscopic transport). The transport of inoculant particles is also modeled, which accounts for the inhomogeneous distribution of inoculant particles in the melt. The model was applied to an industrial sized (350mm thick) DC cast aluminium alloy ingot. A discretized nuclei size distribution was defined and the impact of different macroscopic phenomena on the grain structure formation was studied: the zone and intensity of nucleation and the resulting grain size distribution. It is shown that nucleation in the presence of macroscopic transport cannot be explained only in terms of cooling rate, but variations of composition, nuclei density and grain density, all affected by transport, must be accounted for
    corecore