7 research outputs found

    Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System

    Full text link
    We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670±\pm100 μ\mus, and the implied strength of scattering (scattering measure) is the lowest that is estimated towards the Crab nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than ∼\sim9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of ∼\sim50 kJy, and the implied brightness temperature is 1031.610^{31.6} K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over two orders of magnitude larger than the prototype equipment, the full system will be capable of detecting such bright giant pulses out to a wide range of Galactic distances; from ∼\sim8 to ∼\sim30 kpc depending on the frequency. The MWA-LFD will thus be a highly promising instrument for the studies of giant pulses and other fast radio transients at low frequencies.Comment: 10 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    First geodetic observations using new VLBI stations ASKAP-29 and WARK12M

    Get PDF
    We report the results of a successful 7 hour 1.4 GHz VLBI experiment using two new stations, ASKAP-29 located in Western Australia and WARK12M located on the North Island of New Zealand. This was the first geodetic VLBI observing session with the participation of these new stations. We have determined the positions of ASKAP-29 and WARK12M. Random errors on position estimates are 150-200 mm for the vertical component and 40-50 mm for the horizontal component. Systematic errors caused by the unmodeled ionosphere path delay may reach 1.3 m for the vertical component.Comment: 11 pages, 6 flgures, 4 table

    Calibration database for the Murchison Widefield Array All-Sky Virtual Observatory

    Get PDF
    We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over thirty-four petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available eighteen months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio-astronomy software packages. In order to populate the database with calibration solutions from the last six years we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database we present an analysis of the stability of the MWA calibration solutions over long time intervals.Comment: 12 pages, 9 figures, Accepted for publication in PAS

    Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System

    Get PDF
    We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670 ± 100 μs, and the implied strength of scattering (scattering measure) is the lowest that is estimated toward the Crab Nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than ∼9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of ∼50 kJy, and the implied brightness temperature is 10 31.6 K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over 2 orders of magnitude larger than the prototype equipment, the full system will be capable of detecting such bright giant pulses out to a wide range of Galactic distances; from ∼ 15 to ∼30 kpc depending on the frequency. The MWA-LFD will thus be a highly promising instrument for the studies of giant pulses and other fast radio transients at low frequencies

    VAST: An ASKAP Survey for Variables and Slow Transients

    Get PDF
    The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc. Australi

    Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    Get PDF
    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric measurements. The radio spectrum is remarkably free of strong terrestrial signals, with the exception of two narrow frequency bands allocated to satellite downlinks and rare bursts due to ground-based transmissions being scattered from aircraft and meteor trails. Results indicate the potential of the MWA-LFD to make significant achievements in its three key science objectives: epoch of reionziation science, heliospheric science, and radio transient detection.Comment: Accepted by AJ. 17 pages with figure
    corecore