204 research outputs found

    Natural nanoparticle structure, properties and reactivity from X-ray studies

    Full text link

    High-pressure synthesis of rock salt LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions

    Full text link
    Metastable LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions with rock salt crystal structure have been synthesized by solid state reaction of ZnO with LiMeO2 complex oxides at 7.7 GPa and 1350-1450 K. Structure, phase composition, thermal stability and thermal expansion of the recovered samples have been studied by X-ray diffraction with synchrotron radiation. At ambient pressure rock salt LiMeO2-ZnO solid solutions are kinetically stable up to 670-800 K depending on the composition.Comment: 11 pages, 3 figures, 1 tabl

    Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions

    Get PDF
    Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mošssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¹ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    Vacancy ordering and electronic structure of gamma-Fe2O3 (maghemite): a theoretical investigation

    Full text link
    The crystal structure of the iron oxide gamma-Fe2O3 is usually reported in either the cubic system (space group P4332) with partial Fe vacancy disorder or in the tetragonal system (space group P41212) with full site ordering and c/a\approx 3. Using a supercell of the cubic structure, we obtain the spectrum of energies of all the ordered configurations which contribute to the partially disordered P4332 cubic structure. Our results show that the configuration with space group P41212 is indeed much more stable than the others, and that this stability arises from a favourable electrostatic contribution, as this configuration exhibits the maximum possible homogeneity in the distribution of iron cations and vacancies. Maghemite is therefore expected to be fully ordered in equilibrium, and deviations from this behaviour should be associated with metastable growth, extended anti-site defects and surface effects in the case of small nanoparticles. The confirmation of the ordered tetragonal structure allows us to investigate the electronic structure of the material using density functional theory (DFT) calculations. The inclusion of a Hubbard (DFT+U) correction allows the calculation of a band gap in good agreement with experiment. The value of the gap is dependent on the electron spin, which is the basis for the spin-filtering properties of maghemite.Comment: 19 pages, 2 tables, 5 figures. To appear in the Journal of Physics - Condensed Matter (2010)
    • 

    corecore