47 research outputs found

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Get PDF
    Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these \u201chidden responders\u201d may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines

    Oncogenic Signaling Pathways in The Cancer Genome Atlas

    Get PDF
    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53 and beta-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy

    Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Get PDF
    DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in 3c20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. Knijnenburg et al. present The Cancer Genome Atlas (TCGA) Pan-Cancer analysis of DNA damage repair (DDR) deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores

    Diaphragm action in light steel framing by sheathing boards

    No full text
    This paper presents the results of shear tests on light steel walls with two types of higher specification OSB/3 board and comparison with elastic theory based on the fixing shear stiffness. The tests were performed to BS EN 594 and showed that the design shear resistance was determined as 5.1 kN/m wall length for a limiting deflection of 0.003H or 4.3 kN/m for a limiting deflection of H/500, where H is the wall height. With plasterboard on the opposite face, the shear stiffness increased by 29%, but these results were more variable. For a single test on a wall with the OSB/3 board on one side and X bracing on the opposite face, the design shear resistance is 5.6 kN/m for a limiting deflection of H/500. For a flame retardant form of OSB/3 board, the stiffness was 21% higher than for the first series of OSB/3 tests. An elastic theory is presented to determine the limiting shear force as a function of the shear stiffness of the fixings between the boards and the C sections, which was provided from small-scale push tests. The results are compared with finite element models and a comparison with the test configurations is presented

    Measuring three-dimensional strain distribution in tendon

    No full text
    Tendons are tough fibrous tissues that facilitate skeletal movement by transferring muscular force to bone. Studies into the effects of mechanical stress on tendons have shown that these can either accelerate healing or cause tendon injuries depending on the load applied. It is known that local strain magnitude and direction play an important role in tendon remodelling and also failure, and different techniques to study strain distribution have been proposed. Image registration and processing techniques are among the recently employed methods. In this study, a novel three-dimensional image processing technique using the Sheffield Image Registration Toolkit is introduced to study local strain and displacement distribution in tendon. The results show that the local normal strain values in the loading axis are smaller than the global applied load, and fibre sliding was detected as a dominant mechanism for transferring the applied load within tendon. However, results from different samples suggest three distinct modes of deformation during loading, as some show only parallel sliding of fibres in respect to the loading axis, whereas others are twisted or deflected in directions transverse to the loading axis. The proposed 3D image registration method is essential for analysing this out-of-plane movement, which cannot be detected using a standard 2D method

    Measurements of Plane-Wave Noise Radiating from a Jet Nozzle

    No full text

    Childhood autoimmune liver disease: indications and outcome of liver transplantation

    No full text
    Background: Graft rejection and disease recurrence are well-recognized complications of liver transplantation (LT) for autoimmune hepatitis (AIH) and autoimmune sclerosing cholangitis (AISC). We describe indications and outcome of LT for childhood AIH and AISC. Patients and Methods: Twenty-year retrospective review of a cohort of children (n = 101) with AIH, AISC, or AIH/sclerosing cholangitis overlap syndrome from a single center. Results: AIH type 1 (AIH1, n 67) was more common than AIH type 2 (AIH2, n 18), AISC (n = 8), or overlap syndrome (n = 8). Overall, 18 patients (18) required LT, the indications being failure of medical therapy (n = 16) and fulminant liver failure (n = 2). Patients with AIH who required LT had a more prolonged prothrombin time at presentation compared with those who did not undergo transplantation (P = 0.01). Patients with AIH1 who received LT had a lower aspartate transaminase (P - 0.009) and alanine transaminase (P = 0.02) levels at initial diagnosis compared with those with AIH1 who did not undergo transplantation. Post-LT, 11 patients (61) had 18 episodes of rejection, most were steroid sensitive. Disease recurrence was observed in 7 patients (39, median duration post-LT 33 months), more common in AIH2 (80 recurrence rate), and those taking cyclosporine (71, 5/7 patients) compared with those taking tacrolimus (18, 2/11 patients; P< 0.05) and in 3 of 3 children who did not have maintenance steroids post-LT. The overall 5- and 7-year post-LT survival rate was 94 and 88, respectively. Conclusions: LT is a good therapeutic option for progressive AIH and AISC, although recurrence of the primary autoimmune process limits the outcome
    corecore