39 research outputs found

    NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.

    Get PDF
    Contains fulltext : 70933.pdf (publisher's version ) (Open Access)Gain-of-function mutations of Na(V)1.7 have been shown to produce two distinct disorders: Na(V)1.7 mutations that enhance activation produce inherited erythromelalgia (IEM), characterized by burning pain in the extremities; Na(V)1.7 mutations that impair inactivation produce a different, nonoverlapping syndrome, paroxysmal extreme pain disorder (PEPD), characterized by rectal, periocular, and perimandibular pain. Here we report a novel Na(V)1.7 mutation associated with a mixed clinical phenotype with characteristics of IEM and PEPD, with an alanine 1632 substitution by glutamate (A1632E) in domain IV S4-S5 linker. Patch-clamp analysis shows that A1632E produces changes in channel function seen in both IEM and PEPD mutations: A1632E hyperpolarizes (-7 mV) the voltage dependence of activation, slows deactivation, and enhances ramp responses, as observed in Na(V)1.7 mutations that produce IEM. A1632E depolarizes (+17mV) the voltage dependence of fast inactivation, slows fast inactivation, and prevents full inactivation, resulting in persistent inward currents similar to PEPD mutations. Using current clamp, we show that A1632E renders dorsal root ganglion (DRG) and trigeminal ganglion neurons hyperexcitable. These results demonstrate a Na(V)1.7 mutant with biophysical characteristics common to PEPD (impaired fast inactivation) and IEM (hyperpolarized activation, slow deactivation, and enhanced ramp currents) associated with a clinical phenotype with characteristics of both IEM and PEPD and show that this mutation renders DRG and trigeminal ganglion neurons hyperexcitable. These observations indicate that IEM and PEPD mutants are part of a physiological continuum that can produce a continuum of clinical phenotypes

    Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    No full text
    International @ AIR+AMX:BNO:SRS:CGOInternational audienceGlyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozičre et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed

    Genomic structure of the human PLZF gene

    No full text
    The human PLZF (promyelocytic leukaemia zinc finger) gene encodes a Krüppel-like zinc finger protein, which was identified via the reciprocal translocation t(11;17)(q23;q21) fusing it to the retinoic acid receptor alpha ( RARα) gene in promyelocytic leukaemia. To determine its complete genomic organisation, we constructed a cosmid-map fully containing the hPLZF gene. The gene has seven exons, including a novel 5′ untranslated exon, varying in size from 87 to 1358 bp and spans at least 120 kb. Flanking intronic sequences were identified and all splice acceptor and donor sites conformed to the gt/ag rule. Five polymorphic markers could be fine located in its vicinity. These data will facilitate mutation analysis of hPLZF in t(11;17) leukaemia cases, as well as assist mapping and loss-of-heterozygosity analysis. Here we have tested hPLZF as a possible candidate for the PGL1 locus involved in hereditary head and neck paragangliomas. However, mutation analysis revealed no aberration in 12 paraganglioma patients from different families
    corecore