255 research outputs found
Ontwerp en evaluatie van content distributie netwerken voor multimediale streaming diensten.
Traditionele Internetgebaseerde diensten voor het verspreiden van bestanden, zoals Web browsen en het versturen van e-mails, worden aangeboden via één centrale server. Meer recente netwerkdiensten zoals interactieve digitale televisie of video-op-aanvraag vereisen echter hoge kwaliteitsgaranties (QoS), zoals een lage en constante netwerkvertraging, en verbruiken een aanzienlijke hoeveelheid bandbreedte op het netwerk. Architecturen met één centrale server kunnen deze garanties moeilijk bieden en voldoen daarom niet meer aan de hoge eisen van de volgende generatie multimediatoepassingen. In dit onderzoek worden daarom nieuwe netwerkarchitecturen bestudeerd, die een dergelijke dienstkwaliteit kunnen ondersteunen. Zowel peer-to-peer mechanismes, zoals bij het uitwisselen van muziekbestanden tussen eindgebruikers, als servergebaseerde oplossingen, zoals gedistribueerde caches en content distributie netwerken (CDN's), komen aan bod. Afhankelijk van de bestudeerde dienst en de gebruikte netwerktechnologieën en -architectuur, worden gecentraliseerde algoritmen voor netwerkontwerp voorgesteld. Deze algoritmen optimaliseren de plaatsing van de servers of netwerkcaches en bepalen de nodige capaciteit van de servers en netwerklinks. De dynamische plaatsing van de aangeboden bestanden in de verschillende netwerkelementen wordt aangepast aan de heersende staat van het netwerk en aan de variërende aanvraagpatronen van de eindgebruikers. Serverselectie, herroutering van aanvragen en het verspreiden van de belasting over het hele netwerk komen hierbij ook aan bod
An SLA-driven framework for dynamic multimedia content delivery federations
Recently, the Internet has become a popular platform for the delivery of multimedia content. However, its best effort delivery approach is ill-suited to guarantee the stringent Quality of Service (QoS) requirements of many existing multimedia services, which results in a significant reduction of the Quality of Experience. This paper presents a solution to these problems, in the form of a framework for dynamically setting up federations between the stakeholders involved in the content delivery chain. More specifically, the framework provides an automated mechanism to set up end-to-end delivery paths from the content provider to the access Internet Service Providers (ISPs), which act as its direct customers and represent a group of end-users. Driven by Service Level Agreements (SLAs), QoS contracts are automatically negotiated between the content provider, the access ISPs, and the intermediary network domains along the delivery paths. These contracts capture the delivered QoS and resource reservation costs, which are subsequently used in the price negotiations between content provider and access ISPs. Additionally, it supports the inclusion of cloud providers within the federations, supporting on-the-fly allocation of computational and storage resources. This allows the automatic deployment and configuration of proxy caches along the delivery paths, which potentially reduce delivery costs and increase delivered quality
Towards the design of a platform for abuse detection in OSNs using multimedial data analysis
Online social networks (OSNs) are becoming increasingly popular every day. The vast amount of data created by users and their actions yields interesting opportunities, both socially and economically. Unfortunately, these online communities are prone to abuse and inappropriate behaviour such as cyber bullying. For victims, this kind of behaviour can lead to depression and other severe problems. However, due to the huge amount of users and data it is impossible to manually check all content posted on the social network. We propose a pluggable architecture with reusable components, able to quickly detect harmful content. The platform uses text-, image-, audio- and video-based analysis modules to detect inappropriate content or high risk behaviour. Domain services aggregate this data and flag user profiles if necessary. Social network moderators need only check the validity of the flagged profiles. This paper reports upon key requirements of the platform, the architectural components and important challenges
End-to-end resource management for federated delivery of multimedia services
Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario
FedRR: a federated resource reservation algorithm for multimedia services
The Internet is rapidly evolving towards a multimedia service delivery platform. However, existing Internet-based content delivery approaches have several disadvantages, such as the lack of Quality of Service (QoS) guarantees. Future Internet research has presented several promising ideas to solve the issues related to the current Internet, such as federations across network domains and end-to-end QoS reservations. This paper presents an architecture for the delivery of multimedia content across the Internet, based on these novel principles. It facilitates the collaboration between the stakeholders involved in the content delivery process, allowing them to set up loosely-coupled federations. More specifically, the Federated Resource Reservation (FedRR) algorithm is proposed. It identifies suitable federation partners, selects end-to-end paths between content providers and their customers, and optimally configures intermediary network and infrastructure resources in order to satisfy the requested QoS requirements and minimize delivery costs
In-depth comparative evaluation of supervised machine learning approaches for detection of cybersecurity threats
This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for testing intrusion detection systems. The data set is divided into several days, each pertaining to different attack classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learning algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter optimization, using a voting mechanism that includes five classification metrics, was employed to select optimal parameters. These results were interpreted to discover whether certain parameter choices were dominant for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to obtain the final classification scores. During the review of these results, execution time, both on consumerand corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this paper establishes a novel supervised machine learning performance baseline for CICIDS2017
Classification hardness for supervised learners on 20 years of intrusion detection data
This article consolidates analysis of established (NSL-KDD) and new intrusion detection datasets (ISCXIDS2012, CICIDS2017, CICIDS2018) through the use of supervised machine learning (ML) algorithms. The uniformity in analysis procedure opens up the option to compare the obtained results. It also provides a stronger foundation for the conclusions about the efficacy of supervised learners on the main classification task in network security. This research is motivated in part to address the lack of adoption of these modern datasets. Starting with a broad scope that includes classification by algorithms from different families on both established and new datasets has been done to expand the existing foundation and reveal the most opportune avenues for further inquiry. After obtaining baseline results, the classification task was increased in difficulty, by reducing the available data to learn from, both horizontally and vertically. The data reduction has been included as a stress-test to verify if the very high baseline results hold up under increasingly harsh constraints. Ultimately, this work contains the most comprehensive set of results on the topic of intrusion detection through supervised machine learning. Researchers working on algorithmic improvements can compare their results to this collection, knowing that all results reported here were gathered through a uniform framework. This work's main contributions are the outstanding classification results on the current state of the art datasets for intrusion detection and the conclusion that these methods show remarkable resilience in classification performance even when aggressively reducing the amount of data to learn from
- …