181 research outputs found

    NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma

    Get PDF
    Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes

    Inhaled long-acting muscarinic antagonists in asthma - A narrative review

    Get PDF
    Long-acting muscarinic antagonists (LAMAs) have a recognised role in the management of chronic obstructive pulmonary disease. In asthma, muscarinic antagonists (both short- and long-acting) were historically considered less effective than β2-agonists; only relatively recently have studies been conducted to evaluate the efficacy of LAMAs, as add-on to either inhaled corticosteroid (ICS) monotherapy or ICS/long-acting β2-agonist (LABA) combinations. These studies led to the approval of the first LAMA, tiotropium, as an add-on therapy in patients with poorly controlled asthma. Subsequently, a number of single-inhaler ICS/LABA/LAMA triple therapies have been approved or are in clinical development for the management of asthma. There is now substantial evidence of the efficacy and safety of LAMAs in asthma that is uncontrolled despite treatment with an ICS/LABA combination. This regimen is recommended by GINA as an optimisation step for patients with severe asthma before any biologic or systemic corticosteroid treatment is initiated. This narrative review summarises the potential mechanisms of action of LAMAs in asthma, together with the initial clinical evidence supporting this use. We also discuss the studies that led to the approval of tiotropium for asthma and the data evaluating the efficacy and safety of the various triple therapies, before considering other potential uses for triple therapy

    IgE is associated with exacerbations and lung function decline in COPD

    Get PDF
    Background: Both allergen-specifc IgE and total IgE in serum play a major role in asthma. However, the role of IgE in chronic obstructive pulmonary disease (COPD) is poorly understood. It was the aim of this study to systematically analyze the relationship between serum IgE levels and disease characteristics in large COPD cohorts. Methods: COSYCONET is a comprehensively characterized cohort of patients with COPD: total IgE and IgE specifc to common aeroallergens were measured in serum of 2280 patients, and related to clinical characteristics of the patients. WISDOM is another large COPD population (2477 patients): this database contains the information whether total IgE in serum was elevated (≥100 IU/l) or normal in patients with COPD. Results: Both in COSYCONET and WISDOM, total IgE was elevated (≥100 IU/l) in>30% of the patients, higher in men than in women, and higher in currently than in not currently smoking men. In COSYCONET, total IgE was elevated in patients with a history of asthma and/or allergies. Men with at least one exacerbation in the last 12 months (50.6% of all men in COSYCONET) had higher median total IgE (71.3 IU/l) than men without exacerbations (48.3 IU/l): this diference was also observed in the subgroups of not currently smoking men and of men without a history of asthma. Surprisingly, a history of exacerbations did not impact on total IgE in women with COPD. Patients in the highest ter tiles of total IgE (>91.5 IU/ml, adjusted OR: 1.62, 95% CI 1.12–2.34) or allergen-specifc IgE (>0.19 IU/ml, adjusted OR: 2.15, 95% CI 1.32–3.51) were at risk of lung function decline (adjusted by: age, gender, body mass index, initial lung function, smoking status, history of asthma, history of allergy). Conclusion: These data suggest that IgE may play a role in specifc COPD subgroups. Clinical trials using antibodies targeting the IgE pathway (such as omalizumab), especially in men with recurrent exacerbations and elevated serum IgE, could elucidate potential therapeutic implications of our observations

    Prediction of air trapping or pulmonary hyperinflation by forced spirometry in COPD patients: results from COSYCONET

    Get PDF
    Background: Air trapping and lung hyperinflation are major determinants of prognosis and response to therapy in chronic obstructive pulmonary disease (COPD). They are often determined by body plethysmography, which has limited availability, and so the question arises as to what extent they can be estimated via spirometry. Methods: We used data from visits 1–5 of the COPD cohort COSYCONET. Predictive parameters were derived from visit 1 data, while visit 2–5 data was used to assess reproducibility. Pooled data then yielded prediction models including sex, age, height, and body mass index as covariates. Hyperinflation was defined as ratio of residual volume (RV) to total lung capacity (TLC) above the upper limit of normal. (ClinicalTrials.gov identifier: NCT01245933). Results: Visit 1 data from 1988 patients (Global Initiative for Chronic Obstructive Lung Disease grades 1–4, n=187, 847, 766, 188, respectively) were available for analysis (n=1231 males, 757 females; mean±SD age 65.1±8.4 years; forced expiratory volume in 1 s (FEV1) 53.1±18.4 % predicted (% pred); forced vital capacity (FVC) 78.8±18.8 % pred; RV/TLC 0.547±0.107). In total, 7157 datasets were analysed. Among measures of hyperinflation, RV/TLC showed the closest relationship to FEV1 % pred and FVC % pred, which were sufficient for prediction. Their relationship to RV/TLC could be depicted in nomograms. Even when neglecting covariates, hyperinflation was predicted by FEV1 % pred, FVC % pred or their combination with an area under the curve of 0.870, 0.864 and 0.889, respectively. Conclusions: The degree of air trapping/hyperinflation in terms of RV/TLC can be estimated in a simple manner from forced spirometry, with an accuracy sufficient for inferring the presence of hyperinflation. This may be useful for clinical settings, where body plethysmography is not available

    ACTIVATE: the effect of aclidinium/formoterol on hyperinflation, exercise capacity, and physical activity in patients with COPD

    Get PDF
    The Phase IV, 8-week, randomized, double-blind, placebo-controlled ACTIVATE study (NCT02424344) evaluated the effect of aclidinium/formoterol (AB/FF) 400/12 mug twice daily on lung hyperinflation, exercise capacity, and physical activity in patients with moderate-to-severe COPD. Patients received AB/FF (n=134) or placebo (n=133) (1:1) via the Genuair/Pressair(R) dry powder inhaler for 8 weeks. From Weeks 5 to 8, all patients participated in behavioral intervention (BI; daily messages providing step goals). The primary end point was trough functional residual capacity (FRC) at Week 4. Exercise endurance time and physical activity were assessed at Week 4 (pharmacotherapy only) and at Week 8 (8 weeks of pharmacotherapy plus 4 weeks of BI). Other end points included post-dose FRC, residual volume, and inspiratory capacity (IC) at rest and during exercise. After 4 weeks, trough FRC improved with AB/FF versus placebo but did not reach significance (125 mL; P=0.0690). However, post-dose FRC, residual volume, and IC at rest improved significantly with AB/FF at Week 4 versus placebo (all P<0.0001). AB/FF significantly improved exercise endurance time and IC at isotime versus placebo at Week 4 (P<0.01 and P<0.0001, respectively) and Week 8 (P<0.05 and P<0.0001, respectively). AB/FF achieved higher step counts (P<0.01) with fewer inactive patients (P<0.0001) at Week 4 versus placebo. Following BI, AB/FF maintained improvements in physical activity at Week 8 and nonsignificant improvements were observed with placebo. AB/FF 400/12 mug demonstrated improvements in lung hyperinflation, exercise capacity, and physical activity versus placebo that were maintained following the addition of BI. A 4-week period of BI might be too short to augment the improvements of physical activity observed with AB/FF

    Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach

    Get PDF
    Background: Recent investigations showed single associations between uric acid levels, functional parameters, exacerbations and mortality in COPD patients. The aim of this study was to describe the role of uric acid within the network of multiple relationships between function, exacerbation and comorbidities. Methods: We used baseline data from the German COPD cohort COSYCONET which were evaluated by standard multiple regression analyses as well as path analysis to quantify the network of relations between parameters, particularly uric acid. Results: Data from 1966 patients were analyzed. Uric acid was significantly associated with reduced FEV1, reduced 6-MWD, higher burden of exacerbations (GOLD criteria) and cardiovascular comorbidities, in addition to risk factors such as BMI and packyears. These associations remained significant after taking into account their multiple interdependences. Compared to uric acid levels the diagnosis of hyperuricemia and its medication played a minor role. Conclusion: Within the limits of a cross-sectional approach, our results strongly suggest that uric acid is a biomarker of high impact in COPD and plays a genuine role for relevant outcomes such as physical capacity and exacerbations. These findings suggest that more attention should be paid to uric acid in the evaluation of COPD disease status

    Prognosis and longitudinal changes of physical activity in idiopathic pulmonary fibrosis

    Get PDF
    Background: Physical activity (PA) is associated with disease severity in idiopathic pulmonary fibrosis (IPF), but longitudinal studies evaluating its prognostic value and changes over time are lacking. Methods: We measured PA (steps per day, SPD) in a cohort of 46 IPF-patients (mean age, 67 years; mean FVC, 76.1%pred.) by accelerometry at baseline, recorded survival status during 3 years follow-up and repeated measurements in survivors. We compared the prognostic value of PA to established mortality predictors including lung function (FVC, DLCO) and 6-min walking-distance (6MWD). Results: During follow-up (median 34 months) 20 patients (43%) died. SPD and FVC best identified non-survivors (AUROC-curve 0.79, p < 0.01). After adjustment for confounders (sex, age, therapy), a standardized increase (i.e. one SD) in SPD, FVC%pred. or DLCO%pred. was associated with a more than halved risk of death (HR < 0.50; p < 0.01). Compared to baseline, SPD, FVC, and 6MWD annually declined in survivors by 973 SPD, 130 ml and 9 m, resulting in relative declines of 48.3% (p < 0.001), 13.3% (p < 0.001) and 7.8% (p = 0.055), respectively. Conclusion: While PA predicts mortality of IPF patients similar to established functional measures, longitudinal decline of PA seems to be disproportionally large. Our data suggest that the clinical impact of disease progression could be underestimated by established functional measures

    Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD

    Get PDF
    Background: COPD influences cardiac function and morphology. Changes of the electrical heart axes have been largely attributed to a supposed increased right heart load in the past, whereas a potential involvement of the left heart has not been sufficiently addressed. It is not known to which extent these alterations are due to changes in lung function parameters. We therefore quantified the relationship between airway obstruction, lung hyperinflation, several echo- and electrocardiographic parameters on the orientation of the electrocardiographic (ECG) P, QRS and T wave axis in COPD. Methods: Data from the COPD cohort COSYCONET were analyzed, using forced expiratory volume in 1 s (FEV1), functional residual capacity (FRC), left ventricular (LV) mass, and ECG data. Results: One thousand, one hundred and ninety-five patients fulfilled the inclusion criteria (mean ± SD age: 63.9 ± 8.4 years; GOLD 0–4: 175/107/468/363/82). Left ventricular (LV) mass decreased from GOLD grades 1–4 (p = 0.002), whereas no differences in right ventricular wall thickness were observed. All three ECG axes were significantly associated with FEV1 and FRC. The QRS axes according to GOLD grades 0–4 were (mean ± SD): 26.2° ± 37.5°, 27.0° ± 37.7°, 31.7° ± 42.5°, 46.6° ± 42.2°, 47.4° ± 49.4°. Effects of lung function resulted in a clockwise rotation of the axes by 25°-30° in COPD with severe airway disease. There were additional associations with BMI, diastolic blood pressure, RR interval, QT duration and LV mass. Conclusion: Significant clockwise rotations of the electrical axes as a function of airway obstruction and lung hyperinflation were shown. The changes are likely to result from both a change of the anatomical orientation of the heart within the thoracic cavity and a reduced LV mass in COPD. The influences on the electrical axes reach an extent that could bias the ECG interpretation. The magnitude of lung function impairment should be taken into account to uncover other cardiac disease and to prevent misdiagnosis
    • …
    corecore