16,286 research outputs found
WTS-4 system verification unit for wind/hydroelectric integration study
The Bureau of Reclamation (Reclamation) initiated a study to investigate the concept of integrating 100 MW of wind energy from megawatt-size wind turbines with the Federal hydroelectric system. As a part of the study, one large wind turbine was purchased through the competitive bid process and is now being installed to serve as a system verification unit (SVU). Reclamation negotiated an agreement with NASA to provide technical management of the project for the design, fabrication, installation, testing, and initial operation. Hamilton Standard was awarded a contract to furnish and install its WTS-4 wind turbine rated at 4 MW at a site near Medicine Bow, Wyoming. The purposes for installing the SVU are to fully evaluate the wind/hydro integration concept, make technical evaluation of the hardware design, train personnel in the technology, evaluate operation and maintenance aspects, and evaluate associated environmental impacts. The SVU will be operational in June 1982. Data from the WTS-4 and from a second SVU, Boeing's MOD-2, will be used to prepare a final design for a 100-MW farm if Congress authorizes the project
Mountain trail formation and the active walker model
We extend the active walker model to address the formation of paths on
gradients, which have been observed to have a zigzag form. Our extension
includes a new rule which prohibits direct descent or ascent on steep inclines,
simulating aversion to falling. Further augmentation of the model stops walkers
from changing direction very rapidly as that would likely lead to a fall. The
extended model predicts paths with qualitatively similar forms to the observed
trails, but only if the terms suppressing sudden direction changes are
included. The need to include terms into the model that stop rapid direction
change when simulating mountain trails indicates that a similar rule should
also be included in the standard active walker model.Comment: Introduction improved. Analysis of discretization errors added.
Calculations from alternative scheme include
Neutron star glitches have a substantial minimum size
Glitches are sudden spin-up events that punctuate the steady spin down of
pulsars and are thought to be due to the presence of a superfluid component
within neutron stars. The precise glitch mechanism and its trigger, however,
remain unknown. The size of glitches is a key diagnostic for models of the
underlying physics. While the largest glitches have long been taken into
account by theoretical models, it has always been assumed that the minimum size
lay below the detectability limit of the measurements. In this paper we define
general glitch detectability limits and use them on 29 years of daily
observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We
find that all glitches lie well above the detectability limits and by using an
automated method to search for small events we are able to uncover the full
glitch size distribution, with no biases. Contrary to the prediction of most
models, the distribution presents a rapid decrease of the number of glitches
below ~0.05 Hz. This substantial minimum size indicates that a glitch must
involve the motion of at least several billion superfluid vortices and provides
an extra observable which can greatly help the identification of the trigger
mechanism. Our study also shows that glitches are clearly separated from all
the other rotation irregularities. This supports the idea that the origin of
glitches is different to that of timing noise, which comprises the unmodelled
random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA
Prediction of LDEF ionizing radiation environment
The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements
A measurement of the cosmic ray elements C to Fe in the two energy intervals 0.5-2.0 GeV/n and 20-60 GeV/n
The study of the cosmic ray abundances beyond 20 GeV/n provides additional information on the propagation and containment of the cosmic rays in the galaxy. Since the average amount of interstellar material traversed by cosmic rays decreases as its energy increases, the source composition undergoes less distortion in this higher energy region. However, data over a wide energy range is necessary to study propagation parameters. Some measurements of some of the primary cosmic ray abundance ratios at both low (near 2 GeV/n) and high (above 20 GeV/n) energy are given and compared to the predictions of the leaky box mode. In particular, the integrated values (above 23.7 GeV/n) for the more abundant cosmic ray elements in the interval C through Fe and the differential flux for carbon, oxygen, and the Ne, Mg, Si group are presented. Limited statistics prevented the inclusion of the odd Z elements
AGRICULTURAL COOPERATION AND PRODUCE MARKETING IN SOUTHWEST VIRGINIA
Growers and community leaders have expressed interest in establishing a horticultural shipping-point market in Southwest Virginia. This paper reports on a study that assessed whether horticultural production would be profitable in the region and, if so, the physical and organizational requirements for a successful shipping-point market. It appears that tomatoes, peppers, and pumpkins can be produced and marketed profitably to large-volume wholesale buyers if growers meet the exacting requirements of the retailers. A cooperative association is the organizational structure with the greatest chance of success. At the conclusion of this study, a shipping-point market in the recommended form was established in Southwest Virginia.Agribusiness, Marketing,
Evidence from satellite altimetry for small-scale convection in the mantle
Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways
Evaluation of be-38 percent al alloy final report, 27 jun. 1964 - 28 feb. 1965
Mechanical properties, microstructural features, and general metallurgical quality of beryllium- aluminum allo
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
- …