731 research outputs found

    The JEM-EUSO Mission

    Get PDF
    JEM-EUSO is a science mission to explore extremes of the Universe. It observes the dark-side of the Earth and detects UV photons emitted from the extensive air shower caused by an extreme energy particle (about 10(exp 20) eV). Such a particle arrives almost straightly through our Milky Way Galaxy and is expected to allow us to trace the source location by its arrival direction. This will open the door to the new astronomy with charged particles. In its five years operation including the tilted mode, JEM-EUSO will detect at least 1,000 events with E>7 X 10(exp 19) eV and determine the energy spectrum of trans-GZK region with a statistical accuracy of several percent. JEM-EUSO is planned to be transported with HTV (H2 Transfer Vehicle) and attached to the Japanese Experiment Module/ Exposure Facility (JEM/EF) of International Space Station. JAXA has selected JEM-EUSO for one of the mission candidates of the second phase utilization of JEM/EF for the launch of early 2010s. One year-long phase-A study will be carried out under JAXA

    Role of correlated two-pion exchange in K+NK^+ N scattering

    Get PDF
    A dynamical model for S-- and P--wave correlated 2π2 \pi (and KKˉK \bar K) exchange between a kaon and a nucleon is presented, starting from corresponding NNˉKKˉN \bar N \rightarrow K \bar K amplitudes in the pseudophysical region, which have been constructed from nucleon, Δ\Delta--isobar and hyperon (Λ\Lambda, Σ\Sigma) exchange Born terms and a realistic meson exchange model of the ππKKˉ\pi \pi \rightarrow K \bar K and KKˉKKˉK \bar K \rightarrow K \bar K amplitude. The contribution in the s--channel is then obtained by performing a dispersion relation over the unitarity cut. In the ρ\rho--channel, considerable ambiguities exist, depending on how the dispersion integral is performed. Our model, supplemented by short range interaction terms, is able to describe empirical K+NK^+ N data below pion production threshold in a satisfactory way.Comment: 24 pages, REVTEX, figures available from the author

    Percolation and epidemics in a two-dimensional small world

    Full text link
    Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of "shortcuts" in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.Comment: 7 pages, 3 figures, 2 table

    Why social networks are different from other types of networks

    Full text link
    We argue that social networks differ from most other types of networks, including technological and biological networks, in two important ways. First, they have non-trivial clustering or network transitivity, and second, they show positive correlations, also called assortative mixing, between the degrees of adjacent vertices. Social networks are often divided into groups or communities, and it has recently been suggested that this division could account for the observed clustering. We demonstrate that group structure in networks can also account for degree correlations. We show using a simple model that we should expect assortative mixing in such networks whenever there is variation in the sizes of the groups and that the predicted level of assortative mixing compares well with that observed in real-world networks.Comment: 9 pages, 2 figure

    Simple models of small world networks with directed links

    Full text link
    We investigate the effect of directed short and long range connections in a simple model of small world network. Our model is such that we can determine many quantities of interest by an exact analytical method. We calculate the function V(T)V(T), defined as the number of sites affected up to time TT when a naive spreading process starts in the network. As opposed to shortcuts, the presence of un-favorable bonds has a negative effect on this quantity. Hence the spreading process may not be able to affect all the network. We define and calculate a quantity named the average size of accessible world in our model. The interplay of shortcuts, and un-favorable bonds on the small world properties is studied.Comment: 15 pages, 9 figures, published versio

    Computer-implemented land planning system and method with GIS integration

    Get PDF
    US 10,614,255 B2Algorithms and the Foundations of Software technolog

    Comparison of three wet-alkaline methods of digestion of biogenic silica in water

    Full text link
    Methods for determination of low levels of biogenic silica (0.2–0.4 mg SiO 2 ) in aqueous samples after digestion with three wetalkaline extraction procedures compared favourably in both precision of replicates and recovery of silica utilized by diatoms in budgeted cultures. Leaching samples with 0.2 M NaOH for 10–15 min at 100°C was the least time consuming procedure. Also interference from silicate minerals was lower for this method than leaching with either 0.5 or 5% Na 2 CO 3 for 2 h at 85°C. The use of filters to concentrate samples enables detection of low levels of biogenic silica with colorimetric procedures. Polycarbonate filters are recommended in preference to cellulose acetate or polyvinyl chloride filters for sample collection. Time-course experiments are recommended for establishing digestion times and determining the presence of mineral silicate interference. Wet-alkaline digestion methods are recommended for routine analysis of biogenic silica in suspended matter in preference to infra-red analysis, alkaline fusion and hydrofluoric acid/nitric acid methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74725/1/j.1365-2427.1983.tb00658.x.pd
    corecore