24,911 research outputs found
Exploiting the Design Freedom of RM
This paper details how Rapid Manufacturing (RM) can overcome the restrictions imposed by the
inherent process limitations of conventional manufacturing techniques and become the enabling
technology in fabricating optimal products. A new design methodology capable of exploiting
RM’s increased design freedom is therefore needed. Inspired by natural world structures of trees
and bones, a multi-objective, genetic algorithm based topology optimisation approach is
presented. This combines multiple unit cell structures and varying volume fractions to create a
heterogeneous part structure which exhibits a uniform stress distribution.Mechanical Engineerin
Identity and Search in Social Networks
Social networks have the surprising property of being "searchable": Ordinary
people are capable of directing messages through their network of acquaintances
to reach a specific but distant target person in only a few steps. We present a
model that offers an explanation of social network searchability in terms of
recognizable personal identities: sets of characteristics measured along a
number of social dimensions. Our model defines a class of searchable networks
and a method for searching them that may be applicable to many network search
problems, including the location of data files in peer-to-peer networks, pages
on the World Wide Web, and information in distributed databases.Comment: 4 page, 3 figures, revte
Quasi-Periodic Oscillations in Short Recurring Bursts of the magnetars SGR 1806-20 and SGR 1900+14 Observed With RXTE
Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars
are of particular interest due to their potential to open up a window into the
neutron star interior via neutron star asteroseismology. However, only three
giant flares have been observed. We therefore make use of the much larger data
set of shorter, less energetic recurrent bursts. Here, we report on a search
for QPOs in a large data set of bursts from the two most burst-active
magnetars, SGR 1806-20 and SGR 1900+14, observed with the Rossi X-ray Timing
Explorer (RXTE). We find a single detection in an averaged periodogram
comprising 30 bursts from SGR 1806-20, with a frequency of 57 Hz and a width of
5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This
QPO fits naturally within the framework of global magneto-elastic torsional
oscillations employed to explain the giant flare QPOs. Additionally, we uncover
a limit on the applicability of Fourier analysis for light curves with low
background count rates and strong variability on short timescales. In this
regime, standard Fourier methodology and more sophisticated Fourier analyses
fail in equal parts by yielding an unacceptably large number of false positive
detections. This problem is not straightforward to solve in the Fourier domain.
Instead, we show how simulations of light curves can offer a viable solution
for QPO searches in these light curves.Comment: accepted for publication in ApJ; 12 pages, 7 figures; code +
instructions at https://github.com/dhuppenkothen/MagnetarQPOSearchPaper ;
associated data products at
http://figshare.com/articles/SGR_1900_14_RXTE_Data/1184101 (SGR 1900+14) and
http://figshare.com/articles/SGR_1806_20_Bursts_RXTE_data_set/1184427 (SGR
1806-20
Spreading and shortest paths in systems with sparse long-range connections
Spreading according to simple rules (e.g. of fire or diseases), and
shortest-path distances are studied on d-dimensional systems with a small
density p per site of long-range connections (``Small-World'' lattices). The
volume V(t) covered by the spreading quantity on an infinite system is exactly
calculated in all dimensions. We find that V(t) grows initially as t^d/d for
t>t^*$,
generalizing a previous result in one dimension. Using the properties of V(t),
the average shortest-path distance \ell(r) can be calculated as a function of
Euclidean distance r. It is found that
\ell(r) = r for r<r_c=(2p \Gamma_d (d-1)!)^{-1/d} log(2p \Gamma_d L^d), and
\ell(r) = r_c for r>r_c.
The characteristic length r_c, which governs the behavior of shortest-path
lengths, diverges with system size for all p>0. Therefore the mean separation s
\sim p^{-1/d} between shortcut-ends is not a relevant internal length-scale for
shortest-path lengths. We notice however that the globally averaged
shortest-path length, divided by L, is a function of L/s only.Comment: 4 pages, 1 eps fig. Uses psfi
Scale-free networks with tunable degree distribution exponents
We propose and study a model of scale-free growing networks that gives a
degree distribution dominated by a power-law behavior with a model-dependent,
hence tunable, exponent. The model represents a hybrid of the growing networks
based on popularity-driven and fitness-driven preferential attachments. As the
network grows, a newly added node establishes new links to existing nodes
with a probability based on popularity of the existing nodes and a
probability based on fitness of the existing nodes. An explicit form of
the degree distribution is derived within a mean field approach. For
reasonably large , , where the
function is dominated by the behavior of for small
values of and becomes -independent as , and is a
model-dependent exponent. The degree distribution and the exponent
are found to be in good agreement with results obtained by extensive numerical
simulations.Comment: 12 pages, 2 figures, submitted to PR
Superconformal Primary Fields on a Graded Riemann Sphere
Primary superfields for a two dimensional Euclidean superconformal field
theory are constructed as sections of a sheaf over a graded Riemann sphere. The
construction is then applied to the N=3 Neveu-Schwarz case. Various quantities
in the N=3 theory are calculated and discussed, such as formal elements of the
super-Mobius group, and the two-point function.Comment: LaTeX2e, 23 pages; fixed typos, sorted references, modified
definition of primary superfield on page
Order-disorder phase transition in a cliquey social network
We investigate the network model of community by Watts, Dodds and Newman (D.
J. Watts et al., Science 296 (2002) 1302) as a hierarchy of groups, each of 5
individuals. A homophily parameter controls the probability
proportional to of selection of neighbours against distance
. The network nodes are endowed with spin-like variables , with
Ising interaction . The Glauber dynamics is used to investigate the
order-disorder transition. The transition temperature is close to 3.8 for
and it falls down to zero above this value. The result provides
a mathematical illustration of the social ability to a collective action {\it
via} weak ties, as discussed by Granovetter in 1973.Comment: 10 pages, 7 figure
Realistic searches on stretched exponential networks
We consider navigation or search schemes on networks which have a degree
distribution of the form . In addition, the
linking probability is taken to be dependent on social distances and is
governed by a parameter . The searches are realistic in the sense that
not all search chains can be completed. An estimate of , where
is the success rate and the dynamic path length, shows that for a
network of nodes, in general. Dynamic small world
effect, i.e., is shown to exist in a restricted region of the
plane.Comment: Based on talk given in Statphys Guwahati, 200
Scaling Invariance in Spectra of Complex Networks: A Diffusion Factorial Moment Approach
A new method called diffusion factorial moment (DFM) is used to obtain
scaling features embedded in spectra of complex networks. For an Erdos-Renyi
network with connecting probability , the scaling
parameter is , while for the scaling
parameter deviates from it significantly. For WS small-world networks, in the
special region , typical scale invariance is found. For GRN
networks, in the range of , we have .
And the value of oscillates around abruptly. In the range
of , we have basically . Scale invariance is one
of the common features of the three kinds of networks, which can be employed as
a global measurement of complex networks in a unified way.Comment: 6 pages, 8 figures. to appear in Physical Review
- …
