Spreading according to simple rules (e.g. of fire or diseases), and
shortest-path distances are studied on d-dimensional systems with a small
density p per site of long-range connections (``Small-World'' lattices). The
volume V(t) covered by the spreading quantity on an infinite system is exactly
calculated in all dimensions. We find that V(t) grows initially as t^d/d for
t>t^*$,
generalizing a previous result in one dimension. Using the properties of V(t),
the average shortest-path distance \ell(r) can be calculated as a function of
Euclidean distance r. It is found that
\ell(r) = r for r<r_c=(2p \Gamma_d (d-1)!)^{-1/d} log(2p \Gamma_d L^d), and
\ell(r) = r_c for r>r_c.
The characteristic length r_c, which governs the behavior of shortest-path
lengths, diverges with system size for all p>0. Therefore the mean separation s
\sim p^{-1/d} between shortcut-ends is not a relevant internal length-scale for
shortest-path lengths. We notice however that the globally averaged
shortest-path length, divided by L, is a function of L/s only.Comment: 4 pages, 1 eps fig. Uses psfi