38 research outputs found

    Rabies surveillance in dogs in Lao PDR from 2010-2016.

    Get PDF
    BACKGROUND: Rabies is a fatal viral disease that continues to threaten both human and animal health in endemic countries. The Lao People's Democratic Republic (Lao PDR) is a rabies-endemic country in which dogs are the main reservoir and continue to present health risks for both human and animals throughout the country. METHODS: Passive, laboratory-based rabies surveillance was performed for suspected cases of dog rabies in Vientiane Capital during 2010-2016 and eight additional provinces between 2015-2016 using the Direct Fluorescent Antibody Test (DFAT). RESULTS: There were 284 rabies positive cases from 415 dog samples submitted for diagnosis. 257 cases were from Vientiane Capital (2010-2016) and the remaining 27 cases were submitted during 2015-2016 from Champassak (16 cases), Vientiane Province (4 cases), Xieng Kuang (3 cases), Luang Prabang (2 cases), Saravan (1 case), Saisomboun (1 case) and Bokeo (1 case). There was a significant increase in rabies cases during the dry season (p = 0.004) (November to April; i.e., <100mm of rainfall per month). No significant differences were noted between age, sex, locality of rabies cases. CONCLUSION: The use of laboratory-based rabies surveillance is a useful method of monitoring rabies in Lao PDR and should be expanded to other provincial centers, particularly where there are active rabies control programs

    Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.

    Get PDF
    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity

    Zoonotic Pathogens in Wildlife Traded in Markets for Human Consumption, Laos

    Get PDF
    We tested animals from wildlife trade sites in Laos for the presence of zoonotic pathogens. Leptospira spp. were the most frequently detected infectious agents, found in 20.1% of animals. Rickettsia typhi and R. felis were also detected. These findings suggest a substantial risk for exposure through handling and consumption of wild animal meat

    Perception of health risks in Lao market vendors

    Get PDF
    Wet markets are a critical part of South-East Asian culture and economy. However, their role in circulation and transmission of both endemic and emerging disease is a source of concern in a region considered a hotspot of disease emergence. In the Lao People's Democratic Republic (Lao PDR, Laos), live and dead wild animals are frequently found in wet markets, despite legislation against the bushmeat trade. This is generally considered to increase the risk of disease transmission and emergence, although whether or not wildlife vendors themselves have indeed increased incidence of zoonotic disease has rarely been assessed. In preparation for a future longitudinal study of market vendors investigating vendors’ exposure to zoonotic pathogens, we conducted a pilot survey of Lao market vendors of wildlife meat, livestock meat and vegetables, to identify demographic characteristics and potential control groups within markets. We also investigated baseline risk perception for infectious diseases among market vendors and assessed the association between risk perception and risk mitigation behaviours. The surveys conducted with 177 vendors revealed similar age, sex, ethnic background and geographical origin between vendor types, but differences in professional background and work history for livestock meat vendors. The perception of disease risk was very low across all vendors, as was the reported use of personal protective equipment, and the two appeared unrelated. Personal risk discounting and assumptions about transmission routes may explain this lack of association. This information will help inform the development of future research, risk communication and risk mitigation policy, especially in the light of the COVID-19 pandemic

    Retrospective investigation of the 2019 African swine fever epidemic within smallholder pig farms in Oudomxay province, Lao PDR

    Get PDF
    The 2019 African swine fever (ASF) outbreak in the Lao People’s Democratic Republic (Lao PDR or Laos) represented a major epidemiologic event where a transitioning lower-middle income nation (LMIC) experienced a viral epidemic in a naïve pig population. The diversity of pig management styles creates challenges for local and regional policymakers when formulating recommendations to control an ASF outbreak. The aim of this study were to investigate the management of pigs in villages of Oudomxay province that were affected by ASF in 2019, as a case study in a smallholder pig-rasing system in northern Laos. The frequencies of well known risk factors were measured in the affected villages and the timelines and household level stock losses due to the outbreak were investigated. These findings were compared to data available from a similar outbreak in the southern province of Savannakhet. Disease control implications of these findings are discussed. Mean losses were 3.0–23.3 pigs per household, with a mean lost herd value of USD 349, 95% CI (294–415). These pig losses reflect those estimated in Savannakhet (6.7 pigs per household). However, the financial loss estimated per household was higher, USD 349 versus USD 215, possibly due to higher pig values and a higher input/output management approach in Oudomxay. The investigation revealed the presence of numerous ASF risk factors, such as swill-feeding and free-ranging. In addition, poor biosecurity practices – such as inappropriate garbage disposal and slaughtering – that could contaminate the environment were present. ASF cases occurred across all villages between June and December 2019, with outbreak periods ranging from 22–103 days. These values are consistent with the outbreak in Savannakhet; however, notable differences in management styles were observed. These findings demonstrate the need for more disease control resources from the village to the Governmental level. Villages need support in enacting context appropriate biosecurity measures, whilst the ongoing surveillance and investigation of ASF require investment in logistical and veterinary resources at the Governmental level

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Antimicrobial Resistance Surveillance of Pigs and Chickens in the Lao People&rsquo;s Democratic Republic, 2018&ndash;2021

    No full text
    The use of antimicrobials in the livestock sector has been identified as a driver for the emergence of antimicrobial resistance (AMR), and AMR has become a growing public health and economic threat in the Lao PDR. We conducted surveillance for AMR in five provinces of the Lao PDR, in order to determine the antimicrobial susceptibility of Escherichia coli and Salmonella spp. isolated from caecal samples from slaughtered pigs at slaughterhouses and from slaughtered chickens at markets during two different time periods: 2018/2019 and 2020/2021. Antimicrobial susceptibility was determined using a panel of 14 antimicrobials using the broth microdilution technique. E. coli and Salmonella from chickens (62% and 33%, respectively) and pigs (88% and 81%, respectively) exhibited resistance to &ge;3 classes of antimicrobials. Of important public health concern was the detection of Salmonella resistant to cefotaxime/ceftazidime, ciprofloxacin, and colistin, deemed as critically important antimicrobials in human medicine. This study aimed to evaluate a national sampling strategy at slaughterhouses and wet markets, and to pilot the laboratory methodologies for bacterial recovery and AMR testing. Experiences from this study will inform capacity development for a national AMR surveillance program, and these early data could serve as reference points for monitoring the impact of the Lao PDR&rsquo;s national action plan to contain AMR

    Abattoir-Based Serological Surveillance and Spatial Risk Analysis of Foot-and-Mouth Disease, Brucellosis, and Q Fever in Lao PDR Large Ruminants

    No full text
    A national animal disease surveillance network initiated by the Lao PDR government is adopted and reinforced by a joint research project between the National Animal Health Laboratory (NAHL), the Department of Livestock and Fisheries (DLF), and the Mahidol Oxford Tropical Medicine Research Unit (MORU). The network is strengthened by staff training and practical exercises and is utilised to provide zoonotic or high-impact disease information on a national scale. Between January and December 2020, large ruminant samples are collected monthly from 18 abattoirs, one in each province, by provincial and district agriculture and forestry officers. The surveillance network collected a total of 4247 serum samples (1316 buffaloes and 2931 cattle) over this period. Samples are tested for antibodies against Brucella spp., Coxiella burnetii (Q fever) and Foot-and-Mouth Disease Non-Structural Protein (FMD NSP) using commercial ELISA kits and the Rose Bengal test. Seroprevalences of Q fever and brucellosis in large ruminants are low at 1.7% (95% CI: 1.3, 2.1) and 0.7% (95% CI: 0.5, 1.0) respectively, while for FMD NSP it is 50.5% (95% CI: 49.0, 52.0). Univariate analyses show differences in seroprevalences of Q fever between destination (abattoir) province (p-value = 0.005), province of origin (p-value = 0.005), animal type (buffalo or cattle) (p-value = 0.0008), and collection month (p-value = 3.4 &times; 10&minus;6). Similar to Q fever, seroprevalences of brucellosis were significantly different for destination province (p-value &lt; 0.00001), province of origin (p-value &lt; 0.00001), animal type (p-value = 9.9 &times; 10&minus;5) and collection month (p-value &lt; 0.00001), plus body condition score (p-value = 0.003), and age (p-value = 0.007). Additionally, risk factors of the FMD NSP dataset include the destination province (p-value &lt; 0.00001), province of origin (p-value &lt; 0.00001), sex (p-value = 7.97 &times; 10&minus;8), age (p-value = 0.009), collection date (p-value &lt; 0.00001), and collection month (p-value &lt; 0.00001). Spatial analyses revealed that there is no spatial correlation of FMD NSP seropositive animals. High-risk areas for Q fever and brucellosis are identified by spatial analyses. Further investigation of the higher risk areas would provide a better epidemiological understanding of both diseases in Lao PDR. In conclusion, the abattoir serological survey provides useful information about disease exposure and potential risk factors. The network is a good base for field and laboratory staff training in practical technical skills. However, the sustainability of such a surveillance activity is relatively low without an external source of funding, given the operational costs and insufficient government budget. The cost-effectiveness of the abattoir survey could be increased by targeting hotspot areas, reducing fixed costs, and extending the focus to cover more diseases

    Seroprevalence of Q fever, Brucellosis, and Bluetongue in selected provinces in Lao People's Democratic Republic

    No full text
    This study has determined the proportional seropositivity of two zoonotic diseases, Q fever and brucellosis, and bluetongue virus (BTV) which is nonzoonotic, in five provinces of Lao People's Democratic Republic (PDR) (Loungphabang, Luangnumtha, Xayaboury, Xiengkhouang, and Champasak, and Vientiane Province and Vientiane capital). A total of 1,089 samples from buffalo, cattle, pigs, and goats were tested, with seropositivity of BTV (96.7%), Q fever (1.2%), and brucellosis (0.3%). The results of this survey indicated that Q fever seropositivity is not widely distributed in Lao PDR; however, Xayaboury Province had a cluster of seropositive cattle in seven villages in four districts (Botan, Kenthao, Paklaiy, and Phiang) that share a border with Thailand. Further studies are required to determine if Xayaboury Province is indeed an epidemiological hot spot of Q fever activity. There is an urgent need to determine the levels of economic loss and human health-related issues caused by Q fever, brucellosis, and BTV in Lao PDR
    corecore