223 research outputs found

    Natural selection on cork oak: allele frequency reveals divergent selection in cork oak populations along a temperature cline

    Get PDF
    A recent study of population divergence at neutral markers and adaptive traits in cork oak has observed an association between genetic distances at locus QpZAG46 and genetic distances for leaf size and growth. In that study it was proposed that certain loci could be linked to genes encoding for adaptive traits in cork oak and, thus, could be used in adaptation studies. In order to investigate this hypothesis, here we (1) looked for associations between molecular markers and a set of adaptive traits in cork oak, and (2) explored the effects of the climate on among-population patterns in adaptive traits and molecular markers. For this purpose, we chose 9-year-old plants originating from thirteen populations spanning a broad range of climatic conditions. Plants established in a common garden site were genotyped at six nuclear microsatellites and phenotypically characterized for six functional traits potentially related to plant performance. Our results supported the proposed linkage between locus QpZAG46 and genes encoding for leaf size and growth. Temperature caused adaptive population divergence in leaf size and growth, which was expressed as differences in the frequencies of the alleles at locus QpZAG46

    Variation within and between Closely Related Species Uncovers High Intra-Specific Variability in Dispersal

    Get PDF
    Mounting evidence shows that contrasting selection pressures generate variability in dispersal patterns among individuals or populations of the same species, with potential impacts on both species dynamics and evolution. However, this variability is hardly considered in empirical works, where a single dispersal function is considered to adequately reflect the species-specific dispersal ability, suggesting thereby that within-species variation is negligible as regard to inter-specific differences in dispersal abilities. We propose here an original method to make the comparison of intra- and inter-specific variability in dispersal, by decomposing the diversity of that trait along a phylogeny of closely related species. We used as test group European butterflies that are classic study organisms in spatial ecology. We apply the analysis separately to eight metrics that reflect the dispersal propensity, the dispersal ability or the dispersal efficiency of populations and species. At the inter-specific level, only the dispersal ability showed the signature of a phylogenetic signal while neither the dispersal propensity nor the dispersal efficiency did. At the within-species level, the partitioning of dispersal diversity showed that dispersal was variable or highly variable among populations: intra-specific variability represented from 11% to 133% of inter-specific variability in dispersal metrics. This finding shows that dispersal variation is far from negligible in the wild. Understanding the processes behind this high within-species variation should allow us to properly account for dispersal in demographic models. Accordingly, to encompass the within species variability in life histories the use of more than one value per trait per species should be encouraged in the construction of databases aiming at being sources for modelling purposes

    The Probable Cell of Origin of NF1- and PDGF-Driven Glioblastomas

    Get PDF
    Primary glioblastomas are subdivided into several molecular subtypes. There is an ongoing debate over the cell of origin for these tumor types where some suggest a progenitor while others argue for a stem cell origin. Even within the same molecular subgroup, and using lineage tracing in mouse models, different groups have reached different conclusions. We addressed this problem from a combined mathematical modeling and experimental standpoint. We designed a novel mathematical framework to identify the most likely cells of origin of two glioma subtypes. Our mathematical model of the unperturbed in vivo system predicts that if a genetic event contributing to tumor initiation imparts symmetric self-renewing cell division (such as PDGF overexpression), then the cell of origin is a transit amplifier. Otherwise, the initiating mutations arise in stem cells. The mathematical framework was validated with the RCAS/tv-a system of somatic gene transfer in mice. We demonstrated that PDGF-induced gliomas can be derived from GFAP-expressing cells of the subventricular zone or the cortex (reactive astrocytes), thus validating the predictions of our mathematical model. This interdisciplinary approach allowed us to determine the likelihood that individual cell types serve as the cells of origin of gliomas in an unperturbed system

    Serum Activity of Platelet-Activating Factor Acetylhydrolase Is a Potential Clinical Marker for Leptospirosis Pulmonary Hemorrhage

    Get PDF
    Pulmonary hemorrhage has been recognized as a major, often lethal, manifestation of severe leptospirosis albeit the pathogenesis remains unclear. The Leptospira interrogans virulent serogroup Icterohaemorrhagiae serovar Lai encodes a protein (LA2144), which exhibited the platelet-activating factor acetylhydrolase (PAF-AH) activity in vitro similar to that of human serum with respect to its substrate affinity and specificity and thus designated L-PAF-AH. On the other hand, the primary amino acid sequence of L-PAF-AH is homologous to the α1-subunit of the bovine brain PAF-AH isoform I. The L-PAF-AH was proven to be an intracellular protein, which was encoded unanimously and expressed similarly in either pathogenic or saprophytic leptospires. Mongolian gerbil is an appropriate experimental model to study the PAF-AH level in serum with its basal activity level comparable to that of human while elevated directly associated with the course of pulmonary hemorrhage during severe leptospirosis. Mortality occurred around the peak of pulmonary hemorrhage, along with the transition of the PAF-AH activity level in serum, from the increasing phase to the final decreasing phase. Limited clinical data indicated that the serum activity of PAF-AH was likely to be elevated in the patients infected by L. interrogans serogroup Icterohaemorrhagiae, but not in those infected by other less severe serogroups. Although L-PAF-AH might be released into the micro-environment via cell lysis, its PAF-AH activity apparently contributed little to this elevation. Therefore, the change of PAF-AH in serum not only may be influential for pulmonary hemorrhage, but also seems suitable for disease monitoring to ensure prompt clinical treatment, which is critical for reducing the mortality of severe leptospirosis

    Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    Get PDF
    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations

    High Temperature Triggers Latent Variation among Individuals: Oviposition Rate and Probability for Outbreaks

    Get PDF
    It is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations.Here we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20 °C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20 °C continued to do so when transferred to 12 °C, whereas individuals that laid many eggs at 20 °C reduced their oviposition and laid the same number of eggs as the others when transferred to 12 °C. When transferred back to 20 °C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature.If climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events

    Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals

    Get PDF
    BACKGROUND: The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. PRINCIPAL FINDINGS: The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind

    Evidence that Adaptation in Drosophila Is Not Limited by Mutation at Single Sites

    Get PDF
    Adaptation in eukaryotes is generally assumed to be mutation-limited because of small effective population sizes. This view is difficult to reconcile, however, with the observation that adaptation to anthropogenic changes, such as the introduction of pesticides, can occur very rapidly. Here we investigate adaptation at a key insecticide resistance locus (Ace) in Drosophila melanogaster and show that multiple simple and complex resistance alleles evolved quickly and repeatedly within individual populations. Our results imply that the current effective population size of modern D. melanogaster populations is likely to be substantially larger (≥100-fold) than commonly believed. This discrepancy arises because estimates of the effective population size are generally derived from levels of standing variation and thus reveal long-term population dynamics dominated by sharp—even if infrequent—bottlenecks. The short-term effective population sizes relevant for strong adaptation, on the other hand, might be much closer to census population sizes. Adaptation in Drosophila may therefore not be limited by waiting for mutations at single sites, and complex adaptive alleles can be generated quickly without fixation of intermediate states. Adaptive events should also commonly involve the simultaneous rise in frequency of independently generated adaptive mutations. These so-called soft sweeps have very distinct effects on the linked neutral polymorphisms compared to the standard hard sweeps in mutation-limited scenarios. Methods for the mapping of adaptive mutations or association mapping of evolutionarily relevant mutations may thus need to be reconsidered

    Population Genetic Differences along a Latitudinal Cline between Original and Recently Colonized Habitat in a Butterfly

    Get PDF
    BACKGROUND: Past and current range or spatial expansions have important consequences on population genetic structure. Habitat-use expansion, i.e. changing habitat associations, may also influence genetic population parameters, but has been less studied. Here we examined the genetic population structure of a Palaeartic woodland butterfly Pararge aegeria (Nymphalidae) which has recently colonized agricultural landscapes in NW-Europe. Butterflies from woodland and agricultural landscapes differ in several phenotypic traits (including morphology, behavior and life history). We investigated whether phenotypic divergence is accompanied by genetic divergence between populations of different landscapes along a 700 km latitudinal gradient. METHODOLOGY/PRINCIPAL FINDINGS: Populations (23) along the latitudinal gradient in both landscape types were analyzed using microsatellite and allozyme markers. A general decrease in genetic diversity with latitude was detected, likely due to post-glacial colonization effects. Contrary to expectations, agricultural landscapes were not less diverse and no significant bottlenecks were detected. Nonetheless, a genetic signature of recent colonization is reflected in the absence of clinal genetic differentiation within the agricultural landscape, significantly lower gene flow between agricultural populations (3.494) than between woodland populations (4.183), and significantly higher genetic differentiation between agricultural (0.050) than woodland (0.034) pairwise comparisons, likely due to multiple founder events. Globally, the genetic data suggest multiple long distance dispersal/colonization events and subsequent high intra- and inter-landscape gene flow in this species. Phosphoglucomutase deviated from other enzymes and microsatellite markers, and hence may be under selection along the latitudinal gradient but not between landscape types. Phenotypic divergence was greater than genetic divergence, indicating directional selection on some flight morphology traits. MAIN CONCLUSIONS/SIGNIFICANCE: Clinal differentiation characterizes the population structure within the original woodland habitat. Genetic signatures of recent habitat expansion remain, notwithstanding high gene flow. After differentiation through drift was excluded, both latitude and landscape were significant factors inducing spatially variable phenotypic variation
    • …
    corecore