32,312 research outputs found

    Intensity-Correlation Spectroscopy

    Get PDF
    A survey is given of techniques for spectroscopic analysis using intensity fluctuations. Particular attention is given to counting times, the role of macroscopic sources and detectors, and the electronic constraints placed on the observations

    Evidence for the Strong Dominance of Proton-Neutron Correlations in Nuclei

    Full text link
    We analyze recent data from high-momentum-transfer (p,pp)(p,pp) and (p,ppn)(p,ppn) reactions on Carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward nucleon emission is extended to include the motion of the NN-pair in the mean field. The model is found to describe major characteristics of the data. Our analysis demonstrates that the removal of a proton from the nucleus with initial momentum 275-550 MeV/c is 92−18+892^{+8}_{-18}% of the time accompanied by the emission of a correlated neutron that carries momentum roughly equal and opposite to the initial proton momentum. Within the NN-SRC dominance assumption the data indicate that the probabilities of pppp or nnnn SRCs in the nucleus are at least a factor of six smaller than that of pnpn SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have important implication for modeling the equation of state of asymmetric nuclear matter.Comment: 4 pages and 3 figures, Revised version to be published in Phys. Rev. Let

    An analysis of prop-fan/airframe aerodynamic integration

    Get PDF
    An approach to aerodynamic integration of turboprops and airframes, with emphasis placed upon wing mounted installations is addressed. Potential flow analytical techniques were employed to study aerodynamic integration of the prop fan propulsion concept with advanced, subsonic, commercial transport airframes. Three basic configurations were defined and analyzed: wing mounted prop fan at a cruise Mach number of 0.8, wing mounted prop fan in a low speed configuration, and aft mounted prop fan at a cruise Mach number of 0.8

    Underground nuclear power plant siting

    Get PDF
    This study is part of a larger evaluation of the problems associated with siting nuclear power plants in the next few decades. This evaluation is being undertaken by the Environmental Quality Laboratory of the California Institute of Technology in conjunction with The Aerospace Corporation and several other organizations. Current efforts are directed toward novel approaches to siting plants within the State of California. This report contains the results of efforts performed by The Aerospace Corporation to provide input information to the larger evaluation relative to underground siting of large central station nuclear power plants. Projections of electric power demand in California and the country as a whole suggest that a major increase in generating capacity will be required. The problem is complicated beyond that of a large but straightforward extension of capital investment by increased emphasis on environmental factors combined with the early stage of commercial application and regulation of nuclear power sources. Hydroelectric power generation is limited by the availability of suitable sites, and fossil fueled plants are constrained by the availability of high quality fuels and the adverse environmental and/or economic impact from the use of more plentiful fuels. A substantial increase in the number of nuclear power plants is now under way. This source of power is expected to provide the maj or portion of increased capacity. Other power sources such as geothermal and nuclear fusion are unlikely to satisfy the national needs due to technical problems and the lack of a comprehensive development program. There are several problems associated with meeting the projected power demand. Chief among these is the location of acceptable and economic plant sites. Indeed a sufficient number of sites may not be found unless changes occur in the procedures for selecting sites, the criteria for accepting sites, or the type of site required. Placement of a nuclear plant underground has been suggested as an alternative to present siting practices. It is postulated that the advantages of underground siting in some situations may more than compensate for added costs so that such facilities could be preferred even where surface sites are available. By virtue of greater safety, reduced surface area requirements, and improved aesthetics, underground sites might also be found where acceptable surface sites are not available. Four small European reactors have been constructed partially underground but plans for large size commercial plants have not progressed. Consequently, the features of underground power plant siting are not well understood. Gross physical features such as depth of burial, number and size of excavated galleries, equipment layout, and access or exit shafts/tunnels must be specified. Structural design features of the gallery liners, containment structure, foundations, and gallery interconnections must also be identified. Identification of the nuclear, electrical, and support equipment appropriate to underground operation is needed. Operational features must be defined for normal operations, refueling, and construction. Several magazine articles have been published addressing underground concepts. but adequate engineering data is not available to support an evaluation of the underground concept. There also remain several unresolved questions relative to the advantages of underground siting as well as the costs and other possible penalties associated with this novel approach to siting. These include the degree of increased safety through improved containment; the extent and value of isolation from falling objects, e. g. aircraft; the value of isolation from surface storms and tidal waves; the value of protection from vandalism or sabotage; the extent by which siting constraints are relieved through reduced population-distance requirements or aggravated by underground construction requirements; and the value to be placed upon the aesthetic differences of a less visible facility. The study described in this report has been directed toward some of these questions and uncertainties. Within the study an effort has been made to identify viable configurations and structural liners for typical light water reactor nuclear power plants. Three configurations are summarized in Section 3. A discussion of the underground gallery liner design and associated structural analyses is presented in Section 4. Also addressed in the study and discussed in Section 5 are some aspects of containment for underground plants. There it is suggested that the need for large separations between the plant and population centers may be significantly reduced, or perhaps eliminated. Section 6 contains a brief discussion of operational considerations for underground plants. The costs associated with excavation and lining of the underground galleries have been estimated in Section 7. These estimates include an assessment of variations implied by different seismic loading assumptions and differences in geologic media. It is shown that these costs are a small percentage of the total cost of comparable surface plants. Finally, the parameters characterizing an acceptable underground site are discussed in Section 8. Material is also included in the appendices pertaining to foreign underground plants, span limits of underground excavations, potential siting areas for underground plants in the State of California, pertinent data from the Underground Nuclear Test Program, and other supporting technical discussions

    A far-infrared study of N/O abundance ratio in galactic H 2 regions

    Get PDF
    Far-infrared lines of N++ and O++ in several galactic H II regions were measured in an effort to probe the abundance ratio N/O. New measurements are presented for W32 (630.8-0.0), Orion A, and G75.84+0.4. The combination of (N III) 57.3 millimicrons and (O III) 88.4 and 51.8 millimicrons yields measurements of N++/O++ that are largely insensitive to electron temperature, density uncertainties, and to clumping of the ionized gas, due to the similarity of the critical densities for these transitions. In the observed nebulae, N++/O++ should be indicative of N/O, a ratio that is of special importance in nucleosynthesis theory. Measurements are compared with previous measurements of M17 and W51. For nebulae in the solar circle, N++/O++ is greater than the N/O values derived from optical studies of N+/O+ in low ionization zones of the same nebulae. We find that N++/O++ in W43 is significantly higher than for the other H II regions in the sample. Since W43 is located at R = 5 kpc, which is the smallest galactocentric distance in our sample, our data appear consistent with the presence of a negative abundance gradient d(N/O)dR

    Near-Infrared, Adaptive Optics Observations of the T Tauri Multiple-Star System

    Full text link
    With high-angular-resolution, near-infrared observations of the young stellar object T Tauri at the end of 2002, we show that, contrary to previous reports, none of the three infrared components of T Tau coincide with the compact radio source that has apparently been ejected recently from the system (Loinard, Rodriguez, and Rodriguez 2003). The compact radio source and one of the three infrared objects, T Tau Sb, have distinct paths that depart from orbital or uniform motion between 1997 and 2000, perhaps indicating that their interaction led to the ejection of the radio source. The path that T Tau Sb took between 1997 and 2003 may indicate that this star is still bound to the presumably more massive southern component, T Tau Sa. The radio source is absent from our near-infrared images and must therefore be fainter than K = 10.2 (if located within 100 mas of T Tau Sb, as the radio data would imply), still consistent with an identity as a low-mass star or substellar object.Comment: 11 pages, 3 figures, submitted to ApJ
    • …
    corecore