42,850 research outputs found

    Multi-epoch infrared photometry of the star forming region G173.58+2.45

    Full text link
    We present a multi-epoch infrared photometric study of the intermediate-mass star forming region G173.58+2.45. Photometric observations are obtained using the near-infrared JHKLMJHKL'M' filters and narrow-band filters centered at the wavelengths of H2_2 (1-0) S(1) (2.122 μ\mum) and [FeII] (1.644 μ\mum) lines. The H2_2 image shows molecular emission from shocked gas, implying the presence of multiple star formation and associated outflow activity. We see evidence for several collimated outflows. The most extended jet is at least 0.25 pc in length and has a collimation factor of \sim 10, which may be associated with a binary system within the central cluster, resolved for the first time here. This outflow is found to be episodic; probably occurring or getting enhanced during the periastron passage of the binary. We also find that the variable star in the vicinity of the outflow source, which was known as a FU Ori type star, is probably not a FU Ori object. However, it does drive a spectacular outflow and the variability is likely to be related to accretion, when large clouds of gas and dust spiral in towards the central source. Many other convincing accretion-outflow systems and YSO candidates are discovered in the field.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    Microscopic resolution broadband dielectric spectroscopy

    Get PDF
    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin

    Perturbation Theory of Coulomb Gauge Yang-Mills Theory Within the First Order Formalism

    Full text link
    Perturbative Coulomb gauge Yang-Mills theory within the first order formalism is considered. Using a differential equation technique and dimensional regularization, analytic results for both the ultraviolet divergent and finite parts of the two-point functions at one-loop order are derived. It is shown how the non-ultraviolet divergent parts of the results are finite at spacelike momenta with kinematical singularities on the light-cone and subsequent branch cuts extending into the timelike region.Comment: 23 pages, 6 figure

    Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles

    Get PDF
    The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]

    The shape of primordial non-Gaussianity and the CMB bispectrum

    Full text link
    We present a set of formalisms for comparing, evolving and constraining primordial non-Gaussian models through the CMB bispectrum. We describe improved methods for efficient computation of the full CMB bispectrum for any general (non-separable) primordial bispectrum, incorporating a flat sky approximation and a new cubic interpolation. We review all the primordial non-Gaussian models in the present literature and calculate the CMB bispectrum up to l <2000 for each different model. This allows us to determine the observational independence of these models by calculating the cross-correlation of their CMB bispectra. We are able to identify several distinct classes of primordial shapes - including equilateral, local, warm, flat and feature (non-scale invariant) - which should be distinguishable given a significant detection of CMB non-Gaussianity. We demonstrate that a simple shape correlator provides a fast and reliable method for determining whether or not CMB shapes are well correlated. We use an eigenmode decomposition of the primordial shape to characterise and understand model independence. Finally, we advocate a standardised normalisation method for fNLf_{NL} based on the shape autocorrelator, so that observational limits and errors can be consistently compared for different models.Comment: 32 pages, 20 figure

    Primordial non-Gaussianity and the CMB bispectrum

    Get PDF
    We present a new formalism, together with efficient numerical methods, to directly calculate the CMB bispectrum today from a given primordial bispectrum using the full linear radiation transfer functions. Unlike previous analyses which have assumed simple separable ansatze for the bispectrum, this work applies to a primordial bispectrum of almost arbitrary functional form, for which there may have been both horizon-crossing and superhorizon contributions. We employ adaptive methods on a hierarchical triangular grid and we establish their accuracy by direct comparison with an exact analytic solution, valid on large angular scales. We demonstrate that we can calculate the full CMB bispectrum to greater than 1% precision out to multipoles l<1800 on reasonable computational timescales. We plot the bispectrum for both the superhorizon ('local') and horizon-crossing ('equilateral') asymptotic limits, illustrating its oscillatory nature which is analogous to the CMB power spectrum

    Gamma-Ray Bursts observed by XMM-Newton

    Full text link
    Analysis of observations with XMM-Newton have made a significant contribution to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area, bandpass and resolution of the EPIC instrument permit the study of a wide variety of spectral features. In particular, strong, time-dependent, soft X-ray emission lines have been discovered in some bursts. The emission mechanism and energy source for these lines pose major problems for the current generation of GRB models. Other GRBs have intrinsic absorption, possibly related to the environment around the progenitor, or possible iron emission lines similar to those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of GRBs discovered by the Swift satellite should help unlock the origin of the GRB phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting, Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica Italian

    Delayed soft X-ray emission lines in the afterglow of GRB 030227

    Full text link
    Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increases from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.Comment: Submitted to ApJL. 14 pages, 3 figures with AASLaTe

    Mode of action of local anaesthetics

    Get PDF
    In conclusion, it is possible to compile a list of salient features which are obviously important, and most of which have been fairly clearly proved:1. The theoretical investigation of local anaesthesia and its practical application are often unrelated. A striking example is the pII effect upon the action of procaine at mucous surfaces. || 2. The present widely-accepted views on nerve impulse Iran smission give added prestige to views on nerve block being caused bypermeability changes. That many local anaesthetics stabilize membrane conditions is very noteworthy. || 3. That some agents block by depolarization is undeniable, but since the nerve impulse is accompanied by a wave of depolarization, it is clear that, if drugs blocked in this way, their blocking effect would be preceded by stimulatory effect, and this is not borne out in clinipractice. || 4. From studies of conduction it is to be expected that inhibition. of metabolism may ultimately cause block, but it is a fairly slow process, due to such factors as the anoxic reserve. || 5. Permeability or metabolic effects occur at, or in, the surface, and this must be partially governed by lipoid solubility (Overton -Meyer theory) and. also by adsorntion (Warburg theory). || 6. Sooner or later the drug penetrates the cell, and the free base is the agent for achieving this in most local anaesthetics (of the basic type). || 7. Because of this action of the free -base, the pH of the anaesthetic solution, and the modifying one of the surrounding medium, have an important part to play in the efficacy of the drug. || 8. There is a growing body of evidence that the free base secures penetration into the cell, and that it is then converted into the cation., which is, in fact, the true 'nucleus' of local anaesthetic activity. || 9. Considerable variation in activity arises from connective tissue, etc. around the nerve fibres, because of the impedance it causes to movement of the drug. This, coupled with site of injection, and pH, may explain many of the delays in onset of drug action, || 10. Myelination provides a further barrier to drug action, and may explain why drugs take longer to act on medullated nerves, since the drug has to effect an entry at the nodes of Ranvier first. It effectively ensures the under normal conditions (of oxygenation, etc.) the un-myelinated fibres (and. this includes the ones carrying sensations of pain) block first. || 11. Farther differentiation is provided by partial blocking which disrupts some impulse frequencies in nerves, whilst leaving others unchanged. By virtue of this, certain intensities of sensation may be selectively eliminated before others. || 12. There is some evidence for preferential local anesthetic effects in the vicinity of the sensory nerve endings, i.e. at the receptor, or immediately adjacent to it. This might well allow a further differentiation of effect, especially if some endings are more susceptible than others. || 13. The peculiar susceptibility of the nodes of Ranvier to drug action lends support to the saltatory theory of nerve conduction, although it is not vital to the present study
    corecore