42,776 research outputs found

    Inversion of stellar fundamental parameters from Espadons and Narval high-resolution spectra

    Full text link
    The general context of this study is the inversion of stellar fundamental parameters from high-resolution Echelle spectra. We aim indeed at developing a fast and reliable tool for the post-processing of spectra produced by Espadons and Narval spectropolarimeters. Our inversion tool relies on principal component analysis. It allows reduction of dimensionality and the definition of a specific metric for the search of nearest neighbours between an observed spectrum and a set of observed spectra taken from the Elodie stellar library. Effective temperature, surface gravity, total metallicity and projected rotational velocity are derived. Various tests presented in this study, and done from the sole information coming from a spectral band centered around the Mg I b-triplet and with spectra from FGK stars are very promising.Comment: 13 pages, 8 figures (accepted A&A). arXiv admin note: text overlap with arXiv:1401.108

    A framework for assessing crop production from rotations

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference of the Colloquium of Organic Researchers (COR). Organic farming systems rely on the management of biological cycles for the provision of nutrients, which are crucial to maximising the production from the system. Rotations based on the use of grass-legume leys are central to the concept of organic farming systems, because they have the potential to support both animal production, and a subsequent, exploitative, arable cropping phase. A major challenge in organic farming is managing the supply of nitrogen, since it has a key role in governing both productivity and environmental impact. Hence, within a rotational system, there is a need to understand the complex interactions that are occurring between crop species and management, livestock production system and the impact of soil and climate on these processes. To understand these interactions, a framework is being developed for rotational farming systems that describes the soil nitrogen, crop growth and livestock production. The framework must address questions that are relevant to researchers and extensions workers. Typical questions relate to the management of nutrients in the short and long-term. Additionally, there are concerns over the impact of weeds, pests and diseases on productivity, as well as the impact of adopting new strategies or crops on the farming system

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process

    Space-Time and Architecture

    Get PDF
    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture

    Thermal expansion method for lining tantalum alloy tubing with tungsten

    Get PDF
    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material

    Semiquantitative Infrared Analysis of Diketones and Anhydrides in a Reaction Mixture

    Get PDF
    The ozonolysis of a hydroxymethylene ketone yields a mixture of diketone and anhydride. Treatment of hydroxymethylene camphor with ozone affords, in addition to the expected camphor quinone, a surprisingly large amount of camphoric anhydride (56%) via Baeyer-Villager reaction. Use of infrared absorption to analyze the relative amounts of camphor quinone and camphoric anhydride in a reaction mixture was studied by comparing peak heights of their carbonyl stretching bands

    Present state of knowledge of the upper atmosphere 1990: An assessment report

    Get PDF
    NASA is charged with the responsibility to report on the state of the knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part 1 of this report, issued earlier this year, summarized the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program during the last two years. New findings since the last report to Congress was issued in 1988 are presented. Several scientific assessments of the current understanding of the chemical composition and physical structure of the stratosphere are included, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: a summary of the most recent international assessment of stratospheric ozone; a study of future chlorine and bromine loading of the atmosphere; a review of the photochemical and chemical kinetics data that are used as input parameters for the atmospheric models; a new assessment of the impact of Space Shuttle launches on the stratosphere; a summary of the environmental issues and needed research to evaluate the impact of the newly re-proposed fleet of stratospheric supersonic civil aircraft; and a list of the contributors to this report and the science assessments which have formed our present state of knowledge of the upper atmosphere and ozone depletion

    Far-infrared rotational emission by carbon monoxide

    Get PDF
    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward

    Detection of Earth-like Planets Using Apodized Telescopes

    Get PDF
    The mission of NASA's Terrestrial Planet Finder (TPF) is to find Earth-like planets orbiting other stars and characterize the atmospheres of these planets using spectroscopy. Because of the enormous brightness ratio between the star and the reflected light from the planet, techniques must be found to reduce the brightness of the star. The current favorite approach to doing this is with interferometry: interfering the light from two or more separated telescopes with a π\pi phase shift, nulling out the starlight. While this technique can, in principle, achieve the required dynamic range, building a space interferometer that has the necessary characteristics poses immense technical difficulties. In this paper, we suggest a much simpler approach to achieving the required dynamic range. By simply adjusting the transmissive shape of a telescope aperture, the intensity in large regions around the stellar image can be reduced nearly to zero. This approach could lead to construction of a TPF using conventional technologies, requiring space optics on a much smaller scale than the current TPF approach.Comment: Accepted for publication in ApJ Letters, 9 pages, 6 figure
    corecore