3,054 research outputs found

    Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    Get PDF
    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.Comment: 15 pages, 12 figure

    Review of: Mies van der Rohe + James Stirling: Circling the Square, The Architecture Gallery, RIBA, March 8 to June 25, 2017

    Get PDF
    A Review of Mies van der Rohe + James Stirling: Circling the Square, The Architecture Gallery, RIBA, 8 March to 25 June 201

    Mammographic density is related to stroma and stromal proteoglycan expression

    Get PDF
    BACKGROUND: Mammographic density and certain histological changes in breast tissues are both risk factors for breast cancer. However, the relationship between these factors remains uncertain. Previous studies have focused on the histology of the epithelial changes, even though breast stroma is the major tissue compartment by volume. We have previously identified lumican and decorin as abundant small leucine-rich proteoglycans in breast stroma that show altered expression after breast tumorigenesis. In this study we have examined breast biopsies for a relationship between mammographic density and stromal alterations. METHODS: We reviewed mammograms from women aged 50–69 years who had enrolled in a provincial mammography screening program and had undergone an excision biopsy for an abnormality that was subsequently diagnosed as benign or pre-invasive breast disease. The overall mammographic density was classified into density categories. All biopsy tissue sections were reviewed and tissue blocks from excision margins distant from the diagnostic lesion were selected. Histological composition was assessed in sections stained with haematoxylin and eosin, and the expression of lumican and decorin was assessed by immunohistochemistry; both were quantified by semi-quantitative scoring. RESULTS: Tissue sections corresponding to regions of high in comparison with low mammographic density showed no significant difference in the density of ductal and lobular units but showed significantly higher collagen density and extent of fibrosis. Similarly, the expression of lumican and decorin was significantly increased. CONCLUSION: Alteration in stromal composition is correlated with increased mammographic density. Although epithelial changes define the eventual pathway for breast cancer development, mammographic density might correspond more directly to alterations in stromal composition

    Estimating a sub-mesoscale diffusivity using a roughness measure applied to a tracer release experiment in the Southern Ocean

    Get PDF
    We test the use of a measure to diagnose a sub-mesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities. Specifically, the robustness of a ‘roughness’ measure to discriminate between tracer fields experiencing different sub-mesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. We use the measure to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. We find that simulations with an isopycnal diffusivity of ~20 m2s−1 best match observations in the Pacific sector of the ACC, rising to ~20-50 m2s−1 through Drake Passage, representing sub-mesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximise the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release

    First Detection of an H2CO 6 cm Maser Flare: A Burst in IRAS 18566+0408

    Get PDF
    We report the discovery of a short-duration (less than 3 months) outburst of the H2CO 6 cm maser in IRAS 18566+0408 (G37.55+0.20). During the flare, the peak flux density of the maser increased by a factor of 4; after less than a month, it decayed to the preflare value. This is the first detection of a short, burstlike variability of an H2CO 6 cm maser. The maser shows an asymmetric line profile that is consistent with the superposition of two Gaussian components. We did not detect a change in the velocity or the line width of the Gaussian components during the flare. If the two Gaussian components trace two separate maser regions, then very likely an event outside the maser gas triggered simultaneous flares at two different locations

    Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    Full text link
    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.Comment: 4 pages, no figures; version to be published in Physical Review Letter

    Uniform shrinking and expansion under isotropic Brownian flows

    Full text link
    We study some finite time transport properties of isotropic Brownian flows. Under a certain nondegeneracy condition on the potential spectral measure, we prove that uniform shrinking or expansion of balls under the flow over some bounded time interval can happen with positive probability. We also provide a control theorem for isotropic Brownian flows with drift. Finally, we apply the above results to show that under the nondegeneracy condition the length of a rectifiable curve evolving in an isotropic Brownian flow with strictly negative top Lyapunov exponent converges to zero as t→∞t\to \infty with positive probability

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape
    • …
    corecore