1,406 research outputs found

    Endovascular treatment of a Superior Mesenteric Artery Syndrome variant secondary to traumatic pseudoaneurysm

    Get PDF
    Pseudoaneurysms related to the superior mesenteric artery (SMA) are a recognised complication of trauma to the vessel, and successful treatment with stenting has been previously described. We report the case of a patient who presented with obstruction of the fourth part of the duodenum secondary to a traumatic pseudoaneurysm, a hitherto unreported variant of superior mesenteric artery syndrome. Exclusion of the pseudoaneurysm and relief of the duodenal obstruction were simultaneously achieved by placement of a covered stent

    The Embryonic Transcriptome Of The Red-Eared Slider Turtle (Trachemys Scripta)

    Get PDF
    The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N-50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences

    Progress in achieving quantitative classification of psychopathology

    Full text link
    Shortcomings of approaches to classifying psychopathology based on expert consensus have given rise to contemporary efforts to classify psychopathology quantitatively. In this paper, we review progress in achieving a quantitative and empirical classification of psychopathology. A substantial empirical literature indicates that psychopathology is generally more dimensional than categorical. When the discreteness versus continuity of psychopathology is treated as a research question, as opposed to being decided as a matter of tradition, the evidence clearly supports the hypothesis of continuity. In addition, a related body of literature shows how psychopathology dimensions can be arranged in a hierarchy, ranging from very broad "spectrum level" dimensions, to specific and narrow clusters of symptoms. In this way, a quantitative approach solves the "problem of comorbidity" by explicitly modeling patterns of co-occurrence among signs and symptoms within a detailed and variegated hierarchy of dimensional concepts with direct clinical utility. Indeed, extensive evidence pertaining to the dimensional and hierarchical structure of psychopathology has led to the formation of the Hierarchical Taxonomy of Psychopathology (HiTOP) Consortium. This is a group of 70 investigators working together to study empirical classification of psychopathology. In this paper, we describe the aims and current foci of the HiTOP Consortium. These aims pertain to continued research on the empirical organization of psychopathology; the connection between personality and psychopathology; the utility of empirically based psychopathology constructs in both research and the clinic; and the development of novel and comprehensive models and corresponding assessment instruments for psychopathology constructs derived from an empirical approach

    Millimetric Ground-based Observations of Cosmic Microwave Background Anisotropy

    Get PDF
    First results of a Cosmic Microwave Background (CMB) anisotropy experiment conducted at the Observatorio del Teide (Tenerife, Spain) are presented. The instrument is a four channel (3.1, 2.1, 1.3 and 1.1 mm) 3^3He bolometer system coupled to a 45 cm diameter telescope. The resultant configuration is sensitive to structures on angular scales ~ 1-2 degrees. We use the channels at the two highest frequencies for monitoring the atmosphere, and apply a simple method to subtract this contribution in channels 1 (3.1 mm) and 2 (2.1 mm). The most intense structure at these two frequencies is the Galactic crossing with peak amplitudes of ~ 350 micro-K. These crossings have been clearly detected with the amplitude and shape predicted. This demonstrates that our multifrequency observations allow an effective assessment and subtraction of the atmospheric contribution. In the section of data at high Galactic latitude we obtain sensitivities ~ 40 micro-K per beam. The statistical analyses show the presence of common signals between channels 1 and 2. Assuming a simple Gaussian auto-correlation model with a scale of coherence ξc=1.32\theta_c=1.32 degrees for the signal, a likelihood analysis of this section of data reveals the presence of fluctuations with intrinsic amplitude C01/2=76−32+43C_{0}^{1/2} = 76^{+43}_{-32} micro -K (68 % CL including a ~ 20% calibration uncertainty). Since residual atmospheric noise might still contaminate our results, we also give our result as an upper limit of 118 micro-K at 95% c.l.Comment: uuencoded, g-zipped tar file containing a 14 page (AASTEX) LaTEX file with 3 PostScript figures. Revision: Minor revisions made; this is the verion which will appear in Astroph. J. Let

    Characterizing K2 planet discoveries : a super-Earth transiting the bright K dwarf HIP 116454

    Get PDF
    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R = 0.716 ± 0.024 R ☉ and mass M = 0.775 ± 0.027 M ☉. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of pR = 2.53 ± 0.18 R ⊕. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M ⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.Publisher PDFPeer reviewe

    CIRCE: Coordinated Ionospheric Reconstruction Cubesat Experiment

    Get PDF
    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a collaborative space mission between the UK Defence Science and Technology Laboratory (Dstl), and the US Naval Research Laboratory (NRL) in developing small satellite ionospheric physics capability. CIRCE will characterise space weather effects on a regional scale in the ionosphere/thermosphere system. Properly characterising the dynamic ionosphere is important for a wide range of both civil and defence applications such as GPS, communications, and sensing technology. Consisting of two near-identical 6U (2x3U) CubeSat buses, the CIRCE nanosatellites will fly in a lead-follow tandem configuration in co-planar near-polar orbits at 500km altitude. Provided by Blue Canyon Technologies (BCT), the two buses will use differential drag to achieve and maintain an in-track separation of between 250 and 500km, allowing short time-scale dynamics to be observed in-situ. These nanosatellites each carry a complement of 5 individual scientific instruments, contributed from academic, industrial, and government partners across the UK and US. Scheduled to launch in 2021 via the US Department of Defence Space Test Program, the two CIRCE satellites will provide observations to enable a greater understanding of the driving processes of geophysical phenomena in the ionosphere/thermosphere system, distributed across a wide range of latitudes, and altitudes, as the mission progresses

    Finding a moral homeground: appropriately critical religious education and transmission of spiritual values

    Get PDF
    Values-inspired issues remain an important part of the British school curriculum. Avoiding moral relativism while fostering enthusiasm for spiritual values and applying them to non-curricular learning such as school ethos or children's home lives are challenges where spiritual, moral, social and cultural (SMSC) development might benefit from leadership by critical religious education (RE). Whether the school's model of spirituality is that of an individual spiritual tradition (schools of a particular religious character) or universal pluralistic religiosity (schools of plural religious character), the pedagogy of RE thought capable of leading SMSC development would be the dialogical approach with examples of successful implementation described by Gates, Ipgrave and Skeie. Marton's phenomenography, is thought to provide a valuable framework to allow the teacher to be appropriately critical in the transmission of spiritual values in schools of a particular religious character as evidenced by Hella's work in Lutheran schools
    • 

    corecore