3,184 research outputs found

    A ground-based NUV secondary eclipse observation of KELT-9b

    Get PDF
    KELT-9b is a recently discovered exoplanet with a 1.49 d orbit around a B9.5/A0-type star. The unparalleled levels of UV irradiation it receives from its host star put KELT-9b in its own unique class of ultra-hot Jupiters, with an equilibrium temperature > 4000 K. The high quantities of dissociated hydrogen and atomic metals present in the dayside atmosphere of KELT-9b bear more resemblance to a K-type star than a gas giant. We present a single observation of KELT-9b during its secondary eclipse, taken with the Wide Field Camera on the Isaac Newton Telescope (INT). This observation was taken in the U-band, a window particularly sensitive to Rayleigh scattering. We do not detect a secondary eclipse signal, but our 3σ\sigma upper limit of 181 ppm on the depth allows us to constrain the dayside temperature of KELT-9b at pressures of ~30 mbar to 4995 K (3σ\sigma). Although we can place an observational constraint of Ag<A_g< 0.14, our models suggest that the actual value is considerably lower than this due to H−^- opacity. This places KELT-9b squarely in the albedo regime populated by its cooler cousins, almost all of which reflect very small components of the light incident on their daysides. This work demonstrates the ability of ground-based 2m-class telescopes like the INT to perform secondary eclipse studies in the NUV, which have previously only been conducted from space-based facilities.Comment: Accepted in ApJL. 7 pages, 3 figure

    Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment

    Get PDF
    Urban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, conducting workshops on cutting-edge developments in urban health, and bridging campus and community efforts in public health, including the Reconnecting to Our Waterways (RWO) initiative

    Performance Evaluation of Inverted Tee (IT) Bridge System

    Get PDF
    The Inverted Tee (IT) girder bridge system was originally developed in 1996 by the University of Nebraska–Lincoln (UNL) researchers and Nebraska Department of Transportation (NDOT) engineers. This bridge system currently accounts for over 110 bridges in Nebraska used for both state highways and local county roads. Extensive longitudinal and transverse deck cracking have been observed and noted in numerous bridge inspection reports. Since the IT girder bridge system is relatively new, limited data and knowledge exist on its structural performance and behavior. This study evaluates the IT girder bridge system by conducting twenty field observations as well as recording accelerometer, strain gauge, and LVDT time histories and lidar scans for a selected subset of these bridges and then a three-dimensional finite element analysis (FEA) was conducted. The field observations included visual inspection for damage and developing deck crack maps to identify a trend for the damage. System identification of the bridge deck and girders helped investigate the global and local structural responses, respectively. Operational modal analysis quantified the natural frequencies, damping ratios, and operational deflected shapes for the instrumented IT girder bridges. These results helped diagnose the reason for the longitudinal deck cracking. The IT girders respond non- uniformly for the first operational deflected shape and independently for higher modes. Two comparable bridges, namely one slab and one NU girder bridge, were instrumented to verify and demonstrate that the IT girder behavior is unique. An advanced geospatial analysis was conducted for the IT girder bridges to develop lidar depth maps of the deck and girders elevations. These depth maps help identify locations of potential water/chloride penetration and girders set at various elevations and/or where the deck thickness is non-uniform. Live load tests helped quantify the transverse dynamic behavior of the bridge girders. Quantifying the transverse dynamic behavior helped validate the source of longitudinal deck cracking in IT girder bridges, which was determined to be the differential deflection between adjacent IT girders. The FEA analysis was conducted to evaluate the live load moment and shear distribution factors and compare that to the predicted values calculated from the AASHTO Standard and LRFD bridge design specifications. The comparison indicated that the predicted distribution factors were conservative. Also, interviews with IT bridge producers and contractors were conducted to determine production and construction advantages and challenges of this bridge system

    Deep Learning-Based Damage Detection from Aerial SfM Point Clouds

    Get PDF
    Aerial data collection is well known as an efficient method to study the impact following extreme events. While datasets predominately include images for post-disaster remote sensing analyses, images alone cannot provide detailed geometric information due to a lack of depth or the complexity required to extract geometric details. However, geometric and color information can easily be mined from three-dimensional (3D) point clouds. Scene classification is commonly studied within the field of machine learning, where a workflow follows a pipeline operation to compute a series of engineered features for each point and then points are classified based on these features using a learning algorithm. However, these workflows cannot be directly applied to an aerial 3D point cloud due to a large number of points, density variation, and object appearance. In this study, the point cloud datasets are transferred into a volumetric grid model to be used in the training and testing of 3D fully convolutional network models. The goal of these models is to semantically segment two areas that sustained damage after Hurricane Harvey, which occurred in 2017, into six classes, including damaged structures, undamaged structures, debris, roadways, terrain, and vehicles. These classes are selected to understand the distribution and intensity of the damage. The point clouds consist of two distinct areas assembled using aerial Structure-from-Motion from a camera mounted on an unmanned aerial system. The two datasets contain approximately 5000 and 8000 unique instances, and the developed methods are assessed quantitatively using precision, accuracy, recall, and intersection over union metrics

    Teaching Presence in Asynchronous Online Classes: It’s Not Just a Façade

    Get PDF
    The expanding scale and scope of online education options, both in terms of design and delivery, creates significant questions that increasingly warrant research attention. This empirical study investigates students’ perceptions and evaluative judgments of a number of methods of setting and sustaining Instructor Presence in an online asynchronous course. Based on factor analysis of our data, we propose refining the idea of Instructor Presence in terms of stylistic versus substantive methods. Tests of student survey data indicate that, while students see value in both types of Instructor Presence, they perceive significantly greater benefit from substantive relative to stylistic methods.

    Truncating first-order Dyson-Schwinger equations in Coulomb-Gauge Yang-Mills theory

    Full text link
    The non-perturbative domain of QCD contains confinement, chiral symmetry breaking, and the bound state spectrum. For the calculation of the latter, the Coulomb gauge is particularly well-suited. Access to these non-perturbative properties should be possible by means of the Green's functions. However, Coulomb gauge is also very involved, and thus hard to tackle. We introduce a novel BRST-type operator r, and show that the left-hand side of Gauss' law is r-exact. We investigate a possible truncation scheme of the Dyson-Schwinger equations in first-order formalism for the propagators based on an instantaneous approximation. We demonstrate that this is insufficient to obtain solutions with the expected property of a linear-rising Coulomb potential. We also show systematically that a class of possible vertex dressings does not change this result.Comment: 22 pages, 4 figures, 1 tabl

    String windings in the early universe

    Full text link
    We study string dynamics in the early universe. Our motivation is the proposal of Brandenberger and Vafa, that string winding modes may play a key role in decompactifying three spatial dimensions. We model the universe as a homogeneous but anisotropic 9-torus filled with a gas of excited strings. We adopt initial conditions which fix the dilaton and the volume of the torus, but otherwise assume all states are equally likely. We study the evolution of the system both analytically and numerically to determine the late-time behavior. We find that, although dynamical evolution can indeed lead to three large spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure

    Perfectionism and Attitudes Towards Sport Psychology Support and Mental Health Support in Athletes

    Get PDF
    Attitudes towards help-seeking will contribute to whether athletes ask for support for performance and mental health issues when needed. While research outside of sport has found perfectionism is related to negative attitudes towards help-seeking, no studies have examined the relationship in sport. We provided the first test of whether perfectionism predicted attitudes towards both sport psychology support and mental health support. One hundred and sixty-six collegiate athletes completed measures of perfectionism and attitudes towards sport psychology support and mental health support. Multiple regression analyses revealed that perfectionistic concerns positively predicted closedness and stigma to sport psychology support and mental health support, and negatively predicted help-seeking towards mental health support. However, perfectionistic strivings negatively predicted stigma to sport psychology support and mental health support, and positively predicted confidence in sport psychology support and help-seeking towards mental health support. Athletes higher in perfectionistic concerns are less likely to seek support when required

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    ReconFusion: 3D Reconstruction with Diffusion Priors

    Full text link
    3D reconstruction methods such as Neural Radiance Fields (NeRFs) excel at rendering photorealistic novel views of complex scenes. However, recovering a high-quality NeRF typically requires tens to hundreds of input images, resulting in a time-consuming capture process. We present ReconFusion to reconstruct real-world scenes using only a few photos. Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets, which regularizes a NeRF-based 3D reconstruction pipeline at novel camera poses beyond those captured by the set of input images. Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions. We perform an extensive evaluation across various real-world datasets, including forward-facing and 360-degree scenes, demonstrating significant performance improvements over previous few-view NeRF reconstruction approaches.Comment: Project page: https://reconfusion.github.io
    • …
    corecore