38,574 research outputs found

    Coulomb gauge confinement in the heavy quark limit

    Full text link
    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure

    Freezing line of the Lennard-Jones fluid: a Phase Switch Monte Carlo study

    Full text link
    We report a Phase Switch Monte Carlo (PSMC) method study of the freezing line of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the original application of the method to hard sphere freezing, and builds on a previous PSMC study of the LJ system by Errington (J. Chem. Phys. {\bf 120}, 3130 (2004)). The latter work is extended by tracing a large section of the Lennard-Jones freezing curve, the results for which we compare to a previous Gibbs-Duhem integration study. Additionally we provide new background regarding the statistical mechanical basis of the PSMC method and extensive implementation details.Comment: 18 pages, 6 figure

    An assessment of an F2 or N2O4 atmospheric injection from an aborted space shuttle mission

    Get PDF
    Assuming a linear relationship between the stratosphere loading of NOx and the magnitude of the ozone perturbation, the change in ozone expected to result from space shuttle ejection of N2O4 was calculated based on the ozone change that is predicted for the (much greater) NOx input that would accompany large-scale operations of SSTs. Stratospheric fluorine reactions were critically reviewed to evaluate the magnitude of fluorine induced ozone destruction relative to the reduction that would be caused by addition of an equal amount of chlorine. The predicted effect on stratospheric ozone is vanishingly small

    Survey of J=0,1 mesons in a Bethe-Salpeter approach

    Full text link
    The Bethe-Salpeter equation is used to comprehensively study mesons with J=0,1 and equal-mass constituents for quark masses from the chiral limit to the b-quark mass. The survey contains masses of the ground states in all corresponding J^{PC} channels including those with "exotic" quantum numbers. The emphasis is put on each particular state's sensitivity to the low- and intermediate-momentum, i.e., long-range part of the strong interaction.Comment: 8 pages, 4 figure

    Inheritance of leaf variegation In Vitis species

    Get PDF
    Chlorophyll varlegation in Vitis species was examined In F1 and S1 populations. A single recessive gene is proposed to account for the occurence of 25 percent variegated seedlings in both F1 and S1 populations. Variegation was not lethal and might be useful in wine grape breeding (If associated with inactive polyphenol oxldase) and for its ornamental value. This trait is one of very few seedling traits trider monogenic control that might be useful in genetic studies of grape

    Underground nuclear power plant siting

    Get PDF
    This study is part of a larger evaluation of the problems associated with siting nuclear power plants in the next few decades. This evaluation is being undertaken by the Environmental Quality Laboratory of the California Institute of Technology in conjunction with The Aerospace Corporation and several other organizations. Current efforts are directed toward novel approaches to siting plants within the State of California. This report contains the results of efforts performed by The Aerospace Corporation to provide input information to the larger evaluation relative to underground siting of large central station nuclear power plants. Projections of electric power demand in California and the country as a whole suggest that a major increase in generating capacity will be required. The problem is complicated beyond that of a large but straightforward extension of capital investment by increased emphasis on environmental factors combined with the early stage of commercial application and regulation of nuclear power sources. Hydroelectric power generation is limited by the availability of suitable sites, and fossil fueled plants are constrained by the availability of high quality fuels and the adverse environmental and/or economic impact from the use of more plentiful fuels. A substantial increase in the number of nuclear power plants is now under way. This source of power is expected to provide the maj or portion of increased capacity. Other power sources such as geothermal and nuclear fusion are unlikely to satisfy the national needs due to technical problems and the lack of a comprehensive development program. There are several problems associated with meeting the projected power demand. Chief among these is the location of acceptable and economic plant sites. Indeed a sufficient number of sites may not be found unless changes occur in the procedures for selecting sites, the criteria for accepting sites, or the type of site required. Placement of a nuclear plant underground has been suggested as an alternative to present siting practices. It is postulated that the advantages of underground siting in some situations may more than compensate for added costs so that such facilities could be preferred even where surface sites are available. By virtue of greater safety, reduced surface area requirements, and improved aesthetics, underground sites might also be found where acceptable surface sites are not available. Four small European reactors have been constructed partially underground but plans for large size commercial plants have not progressed. Consequently, the features of underground power plant siting are not well understood. Gross physical features such as depth of burial, number and size of excavated galleries, equipment layout, and access or exit shafts/tunnels must be specified. Structural design features of the gallery liners, containment structure, foundations, and gallery interconnections must also be identified. Identification of the nuclear, electrical, and support equipment appropriate to underground operation is needed. Operational features must be defined for normal operations, refueling, and construction. Several magazine articles have been published addressing underground concepts. but adequate engineering data is not available to support an evaluation of the underground concept. There also remain several unresolved questions relative to the advantages of underground siting as well as the costs and other possible penalties associated with this novel approach to siting. These include the degree of increased safety through improved containment; the extent and value of isolation from falling objects, e. g. aircraft; the value of isolation from surface storms and tidal waves; the value of protection from vandalism or sabotage; the extent by which siting constraints are relieved through reduced population-distance requirements or aggravated by underground construction requirements; and the value to be placed upon the aesthetic differences of a less visible facility. The study described in this report has been directed toward some of these questions and uncertainties. Within the study an effort has been made to identify viable configurations and structural liners for typical light water reactor nuclear power plants. Three configurations are summarized in Section 3. A discussion of the underground gallery liner design and associated structural analyses is presented in Section 4. Also addressed in the study and discussed in Section 5 are some aspects of containment for underground plants. There it is suggested that the need for large separations between the plant and population centers may be significantly reduced, or perhaps eliminated. Section 6 contains a brief discussion of operational considerations for underground plants. The costs associated with excavation and lining of the underground galleries have been estimated in Section 7. These estimates include an assessment of variations implied by different seismic loading assumptions and differences in geologic media. It is shown that these costs are a small percentage of the total cost of comparable surface plants. Finally, the parameters characterizing an acceptable underground site are discussed in Section 8. Material is also included in the appendices pertaining to foreign underground plants, span limits of underground excavations, potential siting areas for underground plants in the State of California, pertinent data from the Underground Nuclear Test Program, and other supporting technical discussions

    Denoising Autoencoders for fast Combinatorial Black Box Optimization

    Full text link
    Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered problem instances, DAE-EDA is considerably faster than BOA and RBM-EDA, sometimes by orders of magnitude. The number of fitness evaluations is higher than for BOA, but competitive with RBM-EDA. These results show that DAEs can be useful tools for problems with low but non-negligible fitness evaluation costs.Comment: corrected typos and small inconsistencie

    If you can't be with the one you love, love the one you're with: How individual habituation of agent interactions improves global utility

    No full text
    Simple distributed strategies that modify the behaviour of selfish individuals in a manner that enhances cooperation or global efficiency have proved difficult to identify. We consider a network of selfish agents who each optimise their individual utilities by coordinating (or anti-coordinating) with their neighbours, to maximise the pay-offs from randomly weighted pair-wise games. In general, agents will opt for the behaviour that is the best compromise (for them) of the many conflicting constraints created by their neighbours, but the attractors of the system as a whole will not maximise total utility. We then consider agents that act as 'creatures of habit' by increasing their preference to coordinate (anti-coordinate) with whichever neighbours they are coordinated (anti-coordinated) with at the present moment. These preferences change slowly while the system is repeatedly perturbed such that it settles to many different local attractors. We find that under these conditions, with each perturbation there is a progressively higher chance of the system settling to a configuration with high total utility. Eventually, only one attractor remains, and that attractor is very likely to maximise (or almost maximise) global utility. This counterintutitve result can be understood using theory from computational neuroscience; we show that this simple form of habituation is equivalent to Hebbian learning, and the improved optimisation of global utility that is observed results from wellknown generalisation capabilities of associative memory acting at the network scale. This causes the system of selfish agents, each acting individually but habitually, to collectively identify configurations that maximise total utility

    Curved planar quantum wires with Dirichlet and Neumann boundary conditions

    Full text link
    We investigate the discrete spectrum of the Hamiltonian describing a quantum particle living in the two-dimensional curved strip. We impose the Dirichlet and Neumann boundary conditions on opposite sides of the strip. The existence of the discrete eigenvalue below the essential spectrum threshold depends on the sign of the total bending angle for the asymptotically straight strips.Comment: 7 page
    • …
    corecore