500 research outputs found

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    A universally programmable Quantum Cellular Automaton

    Full text link
    We discuss the role of classical control in the context of reversible quantum cellular automata. Employing the structure theorem for quantum cellular automata, we give a general construction scheme to turn an arbitrary cellular automaton with external classical control into an autonomous one, thereby proving the computational equivalence of these two models. We use this technique to construct a universally programmable cellular automaton on a one-dimensional lattice with single cell dimension 12.Comment: 4 pages, 4 figures, minor changes in introduction, fixed typos, accepted for publication in Physical Review Letter

    Adaptive versus non-adaptive strategies for quantum channel discrimination

    Full text link
    We provide a simple example that illustrates the advantage of adaptive over non-adaptive strategies for quantum channel discrimination. In particular, we give a pair of entanglement-breaking channels that can be perfectly discriminated by means of an adaptive strategy that requires just two channel evaluations, but for which no non-adaptive strategy can give a perfect discrimination using any finite number of channel evaluations.Comment: 11 page

    Robust randomized benchmarking of quantum processes

    Full text link
    We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.Comment: 4+ pages, 1 figure, and 1 tabl

    The Dynamical Additivity And The Strong Dynamical Additivity Of Quantum Operations

    Full text link
    In the paper, the dynamical additivity of bi-stochastic quantum operations is characterized and the strong dynamical additivity is obtained under some restrictions.Comment: 9 pages, LaTeX, change the order of name

    NP-hardness of decoding quantum error-correction codes

    Full text link
    Though the theory of quantum error correction is intimately related to the classical coding theory, in particular, one can construct quantum error correction codes (QECCs) from classical codes with the dual containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expect degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or non-degenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems, and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.Comment: 5 pages, no figure. Final version for publicatio

    Distribution of chirality in the quantum walk: Markov process and entanglement

    Full text link
    The asymptotic behavior of the quantum walk on the line is investigated focusing on the probability distribution of chirality independently of position. The long-time limit of this distribution is shown to exist and to depend on the initial conditions, and it also determines the asymptotic value of the entanglement between the coin and the position. It is shown that for given asymptotic values of both the entanglement and the chirality distribution it is possible to find the corresponding initial conditions within a particular class of spatially extended Gaussian distributions. Moreover it is shown that the entanglement also measures the degree of Markovian randomness of the distribution of chirality.Comment: 5 pages, 3 figures, It was accepted in Physcial Review

    Efficient estimation of nearly sparse many-body quantum Hamiltonians

    Full text link
    We develop an efficient and robust approach to Hamiltonian identification for multipartite quantum systems based on the method of compressed sensing. This work demonstrates that with only O(s log(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.Comment: 8 pages, 2 figures. Title is changed. Detailed error analysis is added. Figures are updated with additional clarifying discussion

    Non-additivity of Renyi entropy and Dvoretzky's Theorem

    Full text link
    The goal of this note is to show that the analysis of the minimum output p-Renyi entropy of a typical quantum channel essentially amounts to applying Milman's version of Dvoretzky's Theorem about almost Euclidean sections of high-dimensional convex bodies. This conceptually simplifies the (nonconstructive) argument by Hayden-Winter disproving the additivity conjecture for the minimal output p-Renyi entropy (for p>1).Comment: 8 pages, LaTeX; v2: added and updated references, minor editorial changes, no content change

    Expected reward modulates encoding-related theta activity before an event

    Get PDF
    Oscillatory brain activity in the theta frequency range (4–8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory
    • …
    corecore